
OBJECT ORIENTED MODEL

User’s Guide
POWERDESIGNER 7.5

Copyright (c) 1988–2000 Sybase, Inc. All rights reserved.

Information in this manual may change without notice and does not represent a commitment on the part of Sybase, Inc. and its
subsidiaries.

The software described in this manual is provided by Sybase, Inc. under a Sybase License agreement. The software may be used
only in accordance with the terms of the agreement.

No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic, mechanical,
manual, optical, or otherwise, without the prior written permission of Sybase, Inc. and its subsidiaries.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive
Server, Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server
Enterprise Replication, Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere
Studio, Application Manager, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-
Translator, APT-Library, ASEP, Backup Server, BayCam, Bit-Wise, Certified PowerBuilder Developer, Certified SYBASE
Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client Services, CodeBank, Column Design,
ComponentPack, Connection Manager, CSP, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect,
Distribution Director, E-Anywhere, E-Whatever, Electronic Case Management, Embedded SQL, EMS, Enterprise Application
Server, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise
Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer, Enterprise Work
Modeler, EWA, First Impression, Formula One, Gateway Manager, GeoPoint, ImpactNow, InfoMaker, Information Anywhere,
Information Everywhere, InformationConnect, InstaHelp, Intellidex, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC,
KnowledgeBase, Logical Memory Manager, MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI
Database Gateway, media.splash, MetaWorks, MethodSet, MySupport, Net-Gateway, Net-Library, NetImpact, Next
Generation Learning, Next Generation Learning Studio, O DEVICE, OASiS, OASiS logo, ObjectConnect, ObjectCycle,
OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Client, Open ClientConnect, Open Client/Server, Open
Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optima++, Partnerships that
Work, PB-Gen, PC APT Execute, PC DB- Net, PC Net Library, Power++, Power Through Knowledge, power.stop,
PowerAMC, PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo,
PowerJ, PowerScript, PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio,
Powersoft Professional, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst, RelationalBeans, Report Workbench,
Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server Manager, Replication Toolkit,
Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-Designor, SAFE, SAFE/PRO, SDF, Secure SQL Server,
Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere,
SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL
Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server
SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase
Development Framework, Sybase Financial Server, Sybase Gateways, Sybase Learning Connection, Sybase MPP, Sybase SQL
Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture,
Sybase User Workbench, SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System XI (logo),
SystemTools, Tabular Data Stream, The Enterprise Client/Server Company, The Extensible Software Platform, The Future Is
Wide Open, The Learning Connection, The Model For Client/Server Solutions, The Online Information Center, Transact-SQL,
Translation Toolkit, Turning Imagination Into Reality, UltraLite, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime
Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control
Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit,
Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA- Server and XP Server are trademarks
of Sybase, Inc. or its subsidiaries

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

Other trademarks are the property of their respective owners.

iii

Contents

About This Book ..ix

1 Object-Oriented Model Basics ..1
Functional overview .. 2
UML and object-oriented modeling ... 3
What is an OOM? ... 4
Objects in an OOM ... 5
Creating a new OOM .. 6
Opening an existing OOM... 8
Defining OOM model options.. 9
Defining OOM properties .. 11

2 Building an Object-Oriented Model.................................13
Defining packages .. 14

Package properties .. 14
Displaying text in package symbols.................................. 15

Defining classes.. 17
Class properties ... 18
Analyzing class properties.. 19
Creating a class.. 21
Inner classes .. 23
Classifiers... 27
Modifying class properties .. 27
Adding objects to a class.. 29
Preview the code of a class or an interface...................... 33
Displaying text in class symbols 34

Defining interfaces .. 36
Interface properties .. 36
Analyzing interface properties .. 37
Creating an interface .. 37
Modifying interface properties .. 39
Adding inner classes to an interface 41
Adding objects to an interface .. 41

iv

Preview the code of an interface 45
Displaying text in interface symbols 46

Defining attributes ... 48
Attribute properties ... 49
Analyzing attribute properties ... 50
Creating an attribute... 51
Modifying attribute properties ... 54
Attaching an attribute to a domain.................................... 57
Copying an attribute to another class............................... 59
Displaying text in attribute symbols 60

Defining identifiers .. 62
Identifier properties... 62
Creating an identifier .. 63
Adding attributes to an identifier 64
Modifying identifier properties... 65

Defining operations ... 67
Operation properties... 67
Analyzing operation properties ... 68
Creating an operation... 68
Modifying operation properties ... 71
Adding constructors and destructors to a class 73
Adding operations to a class .. 77
Adding Getter and Setter operations to a class................ 79
Creating an implementation operation 81
Modifying the code of an implementation operation......... 83
Copying an operation to another class 84
Displaying text in operation symbols 85

Defining parameters ... 88
Parameter properties.. 88
Creating a parameter ... 89

Defining generalizations.. 91
Generalization properties ... 91
Analyzing generalization properties.................................. 92
Creating a generalization.. 92
Modifying generalization properties.................................. 94
Displaying text in generalization symbols......................... 95

Defining associations.. 97
Association properties .. 98
Creating an association.. 99
Analyzing cardinality properties 100
Changing an association into an associative class 102
Modifying association properties 103
Displaying text in association symbols 106

Defining dependencies ... 108
Dependency properties .. 108
Analyzing dependency properties................................... 109

v

Creating a dependency .. 109
Modifying dependency properties................................... 111
Displaying text in dependency symbols.......................... 112

Defining realizations.. 114
Realization properties... 114
Creating a realization.. 115
Modifying realization properties 116
Displaying text in realization symbols 118

Defining domains .. 120
Domain properties .. 120
Creating a domain .. 121
Indicating data type, length, and precision 122
Selecting a data type for a domain 123
Selecting a data type from a list of standard data types. 125
Modifying domain properties .. 129

Defining check parameters ... 130
Setting standard check parameters for objects.............. 130
Defining additional check parameters for objects 131
Using a validation rule in check parameters................... 132

3 Managing Object-Oriented Models135
Checking an OOM .. 136

Object parameters verified by Check model 136
OOM check options.. 137
Indicating error severity .. 137
Object selection in the Check Model 138
Checking a OOM.. 138
Making corrections based on OOM check results.......... 141

Merging two OOM... 144
Opening a Rose model in an OOM....................................... 145

Objects imported .. 146
Objects not imported .. 147

4 Reverse Engineering..149
What is reverse engineering? ... 150
Reverse engineering Java .. 151

Reverse engineering Java options 152
Loading a JDK library model in the workspace 153
Reverse engineering Java source files
without code body... 154
Reverse engineering Java source files 156
Reverse engineering compiled Java files....................... 158
Reverse engineering Java files from a source directory 161
Reverse engineering archived .jar or .zip files................ 163

Reverse engineering PowerBuilder....................................... 166

vi

Reverse engineering PowerBuilder options 166
Loading a PowerBuilder library model in
the workspace .. 168
Reverse engineering objects from a
PowerBuilder application .. 169
Reverse engineering objects from SRU files 171

Reverse engineering XML .. 174
Reverse engineering XML options 174
Reverse engineering XML files 175

Reverse engineering into a new OOM.................................. 177

5 Generating Objects from an OOM179
Generating objects.. 180

Selecting objects to include in the generation 180
Generating Java source files .. 182

Defining Java generation options 182
Generating Java class definition files 184
Creating Java BeanInfo classes..................................... 186

Generating objects for PowerBuilder 189
Defining PowerBuilder generation options 189
Generating objects for a PowerBuilder application 191
Generating PowerBuilder objects in sru files.................. 193

Generating for XML .. 195
Defining XML generation options 195
Generating XML objects... 196

Customizing scripts... 199

6 Generating a Conceptual Data Model from an
Object-Oriented Model...201

Generating OOM objects to a CDM...................................... 202
Translating OOM objects into CDM objects 202

Translating OOM data types for a CDM 203
Translating Java data types for a CDM.......................... 203

Generating a CDM from an OOM... 204
Generating and updating a CDM.................................... 204
CDM generation options... 205
Object selection parameters .. 206
Generating a new CDM.. 207
Updating an existing CDM.. 210

7 Generating a Physical Data Model from an
Object-Oriented Model...215

Generating OOM objects to a PDM 216
Translating OOM objects into PDM objects 216

vii

Translating OOM data types for a PDM................................ 217
Translating Java data types for a PDM 217

Generating a PDM from an OOM ... 218
Generating and updating a PDM.................................... 218
Defining PDM generation options................................... 220
Object selection parameters... 220
Generating a new PDM .. 221
Updating an existing PDM.. 224

8 Using Object Languages ...229
Object languages .. 230

Types of object language ... 230
Accessing object language properties............................ 231
Modifying the current object language............................ 231
Modifying linked object language properties 233
Changing the object language of an OOM 235
Creating a new object language..................................... 235

Using the object language editor .. 239
Modifying values in the object language editor............... 240

Object language editor categories .. 241
General category.. 241
UML category ... 241
Script category.. 245
Extended Attributes category ... 249

9 Using Business Rules..251
What is a business rule?... 252
Defining business rules in an OOM 253

Types of business rule ... 253
Business rule properties... 254
Creating a business rule... 254

Applying business rules to objects.. 256
Applying a business rule to an object 256
Attaching an expression to a business rule.................... 257

Glossary ...259

Index ...263

viii

ix

About This Book

This book describes the PowerDesigner Object-Oriented Model environment.
It shows you how to do the following:

♦ Build an Object-Oriented Model (OOM)

♦ Use classes, packages, and other modeling objects

♦ Verify the model and import a Rose model

♦ Generate a Conceptual Data Model and a Physical Data Model from the
OOM

♦ Reverse engineer Java files

♦ Generate Java source files

Anyone who will be designing or building an OOM with PowerDesigner
Object-Oriented Model will find this book useful. It requires an
understanding of object modeling, as well as familiarity with UML theory.
Some experience with database structure and terminology, is helpful but not
required.

This book focuses on the design and construction of an object-oriented
model. General information about the PowerDesigner modeling environment,
for example using many of the graphic tools, interface features, merging
models, and using the Browser, can be found in the PowerDesigner General
Features Guide.

Subject

Audience

Where to find
information

About This Book

x

To help you do your work more easily, this book is divided into chapters that
focus on particular goals.

If you want to Use these parts of the book

Learn about the environment Object-Oriented Model Basics

Build an object-oriented model Building a Object-Oriented Model

Verifying the model and
importing a Rose model

Managing Object-Oriented Models

Generating a conceptual data
model or a physical data model

The chapters on generating conceptual and
physical models

1

C H A P T E R 1

Object-Oriented Model Basics

This chapter presents the PowerDesigner Object-Oriented Model. It provides
you with an introduction to the basic notions of object-oriented modeling and
the Unified Modeling Language (UML).

Topic Page

Functional overview 2

UML and object-oriented modeling 3

What is an OOM? 4

Objects in an OOM 5

Creating a new OOM 6

Opening an existing OOM 8

Defining OOM model options 9

Defining OOM properties 11

About this chapter

Contents

Functional overview

2

Functional overview
PowerDesigner Object-Oriented Model is a powerful design tool for object-
oriented modeling. It gives you all the advantages of a graphical object
design implementation.

With this product, you can:

♦ Build an Object-Oriented Model (OOM)

♦ Generate Java class source files (.java)

♦ Generate PowerBuilder objects

♦ Reverse engineer Java files (.class, .java, or .jar)

♦ Reverse engineer PowerBuilder objects

♦ Import a Conceptual Data Model (CDM)

♦ Import a Physical Data Model (PDM)

♦ Generate a Conceptual Data Model (CDM)

♦ Generate a Physical Data Model (PDM)

♦ Customize the Object-Oriented Model to suit physical and performance
considerations

♦ Customize and print model reports

Chapter 1 Object-Oriented Model Basics

3

UML and object-oriented modeling
UML (The Unified Modeling Language) is a modeling language aimed at
defining standards for object-oriented modeling. UML has become a
standardized language largely through the work of the OMG (Object
Management Group), a group composed of individuals and representatives of
companies involved in object-oriented projects. However, its original
conception drew much of its inspiration from the work of G. Booch, J.
Rumbaugh, and I. Jacobson.

UML has a vocabulary and rules that focus on the conceptual and physical
representation of a system. You use UML symbols and notations to create
your models and diagrams in an OOM.

UML has a well-defined syntax and semantics that is clear and easy to use in
object modeling. All of the terminology used in the OOM interface is
consistent with UML language notations.

Object-oriented modeling refers to the process of using objects as the basic
building blocks for creating a software system. An object in this context
usually means a class, that is, a description of a set of common objects. Each
object or class has identity and behavior. You use these objects to build
models in which the properties of each object interact to perform certain
actions that together make up a system of information.

What is UML?

Notational
Terminology

What is object-
oriented modeling?

What is an OOM?

4

What is an OOM?
An OOM contains a set of packages, classes, interfaces, and their
relationships. These objects together form a class structure that is the logical
design view of all (or part of) a software system. An OOM is essentially a
static conceptual model of a software system.

You use PowerDesigner Object-Oriented Model to build object-oriented
models (OOM). You can build an OOM for purely object-oriented modeling
purposes, to generate Java files or for PowerBuilder, or you can use objects
from an OOM in a Physical Data Model (PDM), for relational database
design analysis.

When modeling objects graphically, you use diagrams such as the class
diagram.

You can use an OOM to:

♦ Represent the physical organization of objects in a graphic format

♦ Generate Java class source files

♦ Generate PowerBuilder objects

♦ Reverse engineer Java class source files

♦ Reverse engineer PowerBuilder objects

♦ Generate a Conceptual Data Model (CDM)

♦ Generate a Physical Data Model (PDM)

There are several ways to create an OOM:

♦ Create an OOM from scratch

♦ Import one or more existing OOM

♦ Generate an OOM from a Conceptual Data Model (CDM)

♦ Generate an OOM from Physical Data Model (PDM)

♦ Import a Rational Rose model (.mdl)

OOM roles

OOM creation

Chapter 1 Object-Oriented Model Basics

5

Objects in an OOM
An OOM represents the interaction of the following objects:

Object
Selection
Tool Description

Package General purpose sub-set used to organize objects
into groups

Class Set of objects that share the same attributes,
operations, methods, and relationships

Interface Collection of operations used to specify the
externally visible behavior of a class, object, or
other entity

Attribute — Named property of a class

Operation — Service that can be requested from a class

Association Structural relationship between objects of
different classes

Dependency Relationship between two modeling elements, in
which a change to one modeling element will
affect the other modeling element

Realization Link between classes and interfaces and between
components and interfaces

Generalization Link between classes showing that the subclass
shares the structure or behavior defined in one or
more superclasses

Creating a new OOM

6

Creating a new OOM
Creating an OOM requires that you do the following:

♦ Open a new file

♦ Give the OOM a name and a code

After you create an OOM, you can enrich its definition by entering properties
and associating objects.

� To create an OOM:

1 Select File➤ New.
or
Click the New button in the toolbar.

The New window appears.

2 Select Object-Oriented Model and click OK.

The Choose Object Language window appears.

Every OOM is attached by default to one set of object language
properties. When you create a new OOM, you choose a target language.

� For more information on object language properties, see the
chapter Object Language Properties.

3 Select an object language from the Object language dropdown listbox.

Chapter 1 Object-Oriented Model Basics

7

4 Click OK.

If you were working on an existing workspace, PowerDesigner opens an
new OOM. If there was no workspace open, PowerDesigner opens a new
workspace and a new OOM.

5 Select Model➤ Model Properties.
or
Right-click any empty space in the diagram and select Model Properties
from the contextual menu.

The model property sheet appears.

6 Type a model name and model code.

7 Click OK.

Opening an existing OOM

8

Opening an existing OOM
An OOM has the file extension .OOM.

� To open an existing OOM:

1 Select File➤ Open.
or
Click the Open tool.

A standard Windows file selection dialog box appears.

2 Select a file with the .OOM extension.

3 Click OK.

The model window displays the selected model.

Chapter 1 Object-Oriented Model Basics

9

Defining OOM model options
You can set model options and naming conventions that apply to all objects
in the model. You can also set naming conventions for each type of object in
your model.

You define OOM model options from the model options dialog box.

You can set options that apply to the following OOM objects:

♦ Classes

♦ Default data types

♦ Domain/Attribute

You can set the following option for classes in an OOM:

Option Description

Show classes as
datatypes

Includes classes that exist in the model in the list of data
types that you can define for attributes, operations, or
parameters

The default data type is the data type that applies to attributes, operations and
parameters if no data type is selected.

You can set the following options for default data type in an OOM:

Option Description

Attribute Default
Data Type

Defines the default data type for all new attributes

Operation Default
Data Type

Defines the default return type for all new operations

Parameter Default
Data Type

Defines the default data type for all new operation
parameters

From the Model Options dialog box, you can choose to enforce non-
divergence between a domain definition and the attributes using the domain,
for the following attribute properties:

Property Attributes in the domain cannot have divergent

Data type Data type, length, and precision

Check Check parameters

Classes

Default data types

Domains/Attribute

Defining OOM model options

10

Your choice of whether or not to enforce domain and attribute non-
divergence has the following results:

Non-divergence Result

Not enforced Attributes that are divergent from the domain definition can
remain attached to the domain

Enforced Attributes that are divergent from the domain (for certain
attribute properties) must be detached from the domain

If you modify domain non-divergence options, these changes apply only to
the current OOM.

� For more information on PowerDesigner model options, see the
PowerDesigner General Features Guide.

� To define OOM model options:

1 Select Tools➤ Model Options.
or
Right-click any empty space in the diagram and select Model Options
from the contextual menu.

The Model Options dialog box opens to the model page.

2 Select model options in the different boxes.

3 Click OK.

Chapter 1 Object-Oriented Model Basics

11

Defining OOM properties
The Model property sheet displays the definition of the current model. From
this property sheet you can modify the model definition.

A OOM has the following model properties:

Property Description Length

Name Name for the model 254

Code Code for the model. This code is generated in
database scripts

254

Comment Descriptive label for the model —

Object language Current object language for the model. You can
open the property sheet for the current object
language by clicking the Properties tool to the
right of the box

—

� To modify the model properties:

1 Select Model➤ Model Properties.
or
Right click the diagram background and select Properties from the
contextual menu.

The model property sheet appears.

2 Type changes to model properties.

3 Click OK.

Defining OOM properties

12

13

C H A P T E R 2

Building an Object-Oriented Model

This chapter describes how to build an Object-Oriented Model (OOM). It
explains the role of each object in an OOM and how to create and modify
objects.

Topic Page

Defining packages 14

Defining classes 17

Defining interfaces 36

Defining attributes 48

Defining identifiers 62

Defining operations 67

Defining parameters 88

Defining generalizations 91

Defining associations 97

Defining dependencies 108

Defining realizations 114

Defining domains 120

Defining check parameters 130

About this chapter

Contents

Defining packages

14

Defining packages
A package is a general purpose mechanism for organizing elements into
groups.

When you are working with large models, you can split any model into
smaller subdivisions in order to avoid manipulating the entire set of data of
the model. Packages can be useful to assign portions of a model, representing
different tasks and subject areas, to different development teams.

You can create as many packages as you need in a model. The name of each
package must be unique in the model.

You can create several packages at the same hierarchical level within a
model. or decompose a package into other packages and continue this
process without limitation in decomposition depth. At each level of
decomposition you can create several diagrams.

Packages work as models, they can contain the following items:

♦ Model objects

♦ Other packages

♦ Diagrams, in order to have different views of the contents of the
package. Each package appears with a default diagram window

� For more information on packages, see the PowerDesigner Feature
Guide.

Package properties

Packages have properties displayed on property sheets. All packages share
the following common properties:

Property Description Length

Name Names are like titles that clearly identify the package
during the design process

254

Code Codes are references for packages 254

Comment A comment is an optional label that describes a
package and provides more information than the name

—

Namespace Option that defines the package as being the area in
which the name of an object must be unique in order to
be used.

—

Package hierarchy

Chapter 2 Building an Object-Oriented Model

15

Displaying text in package symbols

You can define the following display preferences for a package:

Preference Description

Show stereotypes When selected, displays the stereotype of the package

Show constraints When selected, displays the constraints (types of business
rule) that are attached to the package

You modify the display preferences for a package in the Display Preferences
dialog box.

� To modify the package display preferences:

1 Select Tools➤ Display Preferences.
or
Right-click the diagram background and select Display Preferences from
the contextual menu.

The Display Preferences dialog box appears.

2 Expand the Object View node in the Category list.

3 Select Package.

Defining packages

16

The package display preferences page appears.

4 Modify the package display preferences.

5 Click OK.

Chapter 2 Building an Object-Oriented Model

17

Defining classes
A class is a description of a set of objects that have a similar structure and
behavior, and share the same attributes, operations, relationships, and
semantics. A class usually implements one or more interfaces.

Classes are the main building blocks of an OOM. Classes, and the
relationships that you create between them, form the basic structure of an
OOM. Typically, classes represent either real, abstract or conceptual things
that together make a whole or a part of a particular problem or system.

The following example shows the class Printer with its attributes and
operations.

Defining classes

18

Class properties

A class has the following general properties:

Property Description
Maximum
length

Name Name of the class 254

Code Reference name for the class 254

Comment Descriptive comment for the class —

Stereotype Subclassification of a class derived from an existing
one. Extends the semantics of a class without
changing it's structure

—

Type Set of instances that share the same operations,
abstract attributes, and relationships, and semantics

—

Visibility Visibility of the class, whose value denotes how it
may be seen and used by other objects

—

Cardinality Specific number of instances that the class can have —

Persistence Lifetime of the instances of a class. An object can be
persistent or transient. If it is persistent, it continues
to exist after the process that created it has ceased to
exist. If it is transient, then it ceases to exist when
the process that created it ceases to exist

—

Abstract Indicates that the class cannot be instantiated and
therefore has no direct instances

—

Final Specifies that the class cannot have any inherited
objects

—

Generate Indicates that the class will be automatically
included among the objects generated from the
model when you launch the generation process

—

A class definition also includes the following properties, which are defined
on associated property sheets:

Property Description

Attribute Defines the characteristics of a class

Operation Carries out a service that effects behavior

Rule A business rule that your business follows. Business rules guide and
document the creation of a model

Chapter 2 Building an Object-Oriented Model

19

Analyzing class properties

The following class properties each have several default values from which
you can select from:

♦ Stereotype

♦ Type

♦ Visibility

♦ Cardinality

Stereotype

Stereotypes are classes that are derived from existing classes but that are
specific to a particular problem. They enable you to extend the semantics of a
class without changing its structure. In this way stereotypes must be based on
existing classes but they allow you to provide additional distinctions for these
classes. Stereotypes can be predefined or user-defined. They allow you to add
additional information that may be specific to a project or process. They may
extend the semantics, but not the structure of pre-existing classes.

You can modify an existing stereotype or create a new one from the object
language property sheet.

� For more information on modifying and creating variables of an object
language, see the chapter Object Language Properties.

Modify or creating
new stereotypes

Defining classes

20

You can declare a class to be one of the following stereotypes:

Stereotype Description

actor Coherent set of roles that users of use cases play when
interacting with the use cases

enumeration List of named values used as the range of a particular
attribute type

exception Exception class. Used mostly in relation to error
messages

implementationClass Class whose instances are statically typed, and that
defines the physical data structure and methods of a class
as implemented in traditional programming languages

process Heavyweight flow that can execute concurrently with
other processes

signal Specification of an asynchronous stimulus communicated
between instances

thread Lightweight flow that can execute concurrently with other
threads within the same process. Usually executes inside
the address space of an enclosing process

type Abstract class used only to specify the structure and
behavior of a set of objects, not the implementation

utility Class that has no instances

Type

You can declare a class to be one of the following types:

♦ Business Object

♦ Class

♦ Storage

♦ Utility

♦ Visual Object

♦ JavaBean

Default stereotypes

Chapter 2 Building an Object-Oriented Model

21

Visibility

The visibility of a class refers to the way in which it can be seen by other
objects. A class that is visible to another object may influence the structure or
behavior of the object, or similarly, its own properties may be affected by the
other object.

Property Visible

Private Only to the class itself

Protected Only to the class and its inherited objects

Package To all objects contained within the same package

Public To all objects in the model

Cardinality

The cardinality of a class specifies the number of instances that the class can
have.

Cardinality Number of instances

0..0 None

0..1 None or one

0..* None to an unlimited number

1..1 One to one

1..* One to an unlimited number

* Unlimited number

Creating a class

There are three ways to create a class:

♦ Create a class symbol in the Browser

♦ Add a new class to the list of classes

♦ Create a class symbol directly in a diagram

Defining classes

22

Creating a class from the Browser

� To create a class from the Browser:

1 Right-click the Classes category in the Browser.

2 Select New from the contextual menu.

The property sheet of the class appears.

3 Type a class name and a class code.

4 Click OK.

A new class is created in the Classes category.

Creating a class from the list of classes

� To create a class by inserting it in the list:

1 Select Model➤ Classes.

The list of classes appears.

Accessing the list of classes
The list of classes is accessible only from a diagram. If the current
diagram is of a package, the list contains all the classes that exist in
the package. If the current diagram is of the model, the list contains
all the classes that exist in the model.

2 Click a blank line in the list.
or
Click the Add a Row tool.

An arrow appears at the beginning of the line.

3 Type a name and code for the class.

4 Select a stereotype from the Stereotype dropdown listbox.

5 Select a visibility from the Visibility dropdown listbox.

6 Click OK.

A symbol for this class is inserted in the current model.

Chapter 2 Building an Object-Oriented Model

23

Creating a class from a diagram

� To create a class in a diagram:

1 Click the Class tool in the palette toolbar.

2 Click anywhere in the diagram.

The following symbol appears at the click position:

At creation, a class is named Classn, where n is a number assigned in the
order of the creation of objects.

3 Click the Pointer tool in the palette toolbar.

4 Double-click the new class symbol in the diagram.

The class property sheet appears.

5 Type a class name and a class code.

6 Click OK.

The newly created class is visible in the Browser.

Inner classes

An inner class is a class that is defined within another (outer) class or
interface. Inner classes are commonly used in Java. They help you to improve
the overall visibility of your model by allowing you to group together classes
that logically belong together.

You can add inner classes to a class or an interface.

Defining classes

24

Attaching an inner class to a class

You attach an inner class to a class (or interface) from the Inner Classes page
of the class (or interface) property sheet.

� To declare an inner class within a class:

1 Double-click a class in the model.

The class property sheet opens to the General page.

Opening property sheets at last accessed page
Property sheets open to the General page by default. However, you
can choose to open property sheets at the last page accessed by
selecting Tools➤ Options➤ Dialog, and selecting the option Keep
Last Tab in the Property Sheets groupbox.

2 Click the Inner Classes tab.

The Inner Classes page appears.

3 Click the Attach inner class tool.

A selection window appears.

4 Click the classes you want to attach as inner classes in the current class.

5 Click OK.

Chapter 2 Building an Object-Oriented Model

25

The classes appear in the list of inner classes for the current class, and
the definition of the classes are added to the current class definition.

6 Click the Code Preview tab to visualize the inner class definitions within
the current class:

7 Click OK.

Defining classes

26

Detaching an inner class from a class

Once you have attached an inner class to a class, to remove its declaration
from the class you must use detach it.

� To detach an inner class from a class:

1 Double-click a class in the model.

The class property sheet opens to the General page.

Opening property sheets at last accessed page
Property sheets open to the General page by default. However, you
can choose to open property sheets at the last page accessed by
selecting Tools➤ Options➤ Dialog, and selecting the option Keep
Last Tab in the Property Sheets groupbox.

2 Click the Inner Classes tab.

The Inner Classes page appears.

3 Select an inner class from the list of inner classes.

4 Click the Detach inner class tool.

The inner class definition is detached from the current class definition
and is removed from the list of inner classes of the current class.

5 Click OK.

Chapter 2 Building an Object-Oriented Model

27

Classifiers

A classifier, in UML terminology, is a mechanism that has structural
(attributes) and behavioral (operations) features. A class is the most
important classifier, but all objects that can have instances, such as interfaces
or associations, are classifiers.

Modifying class properties

There are two approaches to modifying class properties:

♦ Modify the property sheet of the class

♦ Modify an entry in the list of classes

Modifying class properties from its property sheet

The class property sheet displays the definition of the class, which you can
modify.

� To modify class properties from its property sheet:

1 Double-click the class in the Browser.
or
Double-click the class in the list of classes.
or
Double-click the class in a diagram.

Defining classes

28

The class property sheet appears.

2 Type or select class properties.
or
Click on a page tab.
Type or select class properties as required.

3 Click OK.

Modifying class properties from the list of classes

The list of classes includes all classes attached to the current model or
package. You can modify the class properties from the list.

� To modify class properties from the list of classes:

1 Select Model➤ Classes.

The list of classes appears.

2 Click the class that you want to modify.

Chapter 2 Building an Object-Oriented Model

29

An arrow appears at the beginning of the line.

3 Modify any of the properties of the class directly in the list.

4 Click OK.

Adding objects to a class

You can add an object to a class, that already exists in the model, but which
belongs to another class.

You can add the following objects to an object:

Object Description

Attribute Named property of a class that defines the characteristics of a
class

Operation Implementation of a service that can be requested from any
object of the class in order to affect behavior

Business rule Written statement specifying what the information system must
do or how it must be structured to support business needs

You add an object to a class from the list in the page corresponding to the
object, in the class property sheet.

When you add an object to a class in this way, you in fact create a copy of the
object. The new object exists as a unique object, and you can then make
changes to it as you would to any object in the model.

Defining classes

30

Adding an attribute to a class

An attribute is a named property of an object that defines the characteristics
of the object.

You can add attributes that already exist in the model and which belong to
other objects.

� To add an attribute to a class:

1 Double-click a class in the model.

The class property sheet appears.

2 Click the Attributes tab.

The Attributes page appears.

3 Click the Add Attributes tool.

Chapter 2 Building an Object-Oriented Model

31

The Selection window appears. It contains a list of all the attributes that
exist in the model, with the exception of those that already belong to the
class.

4 Select the attributes that you want to add to the class.
or
Use the Select All tool to add all the attributes in the list to the class.

5 Click OK.

The attributes are added to the class and appear at the end of the list.

6 Click OK.

Adding an operation to a class

An operation is the implementation of a service that can be requested from
any object of the class in order to affect behavior.

You can add operations that already exist in the model and which belong to
other objects.

� To add an operation to a class:

1 Double-click a class in the model.

The class property sheet appears.

2 Click the Operations tab.

Defining classes

32

The Operations page appears.

3 Click the Add Operations tool.

The Selection window appears. It contains a list of all the operations that
exist in the model, with the exception of those that already belong to the
class.

4 Select the operations that you want to add to the class.

5 Click OK.

Chapter 2 Building an Object-Oriented Model

33

The operations are added to the class and appear in the list of operations
for the class.

6 Click OK.

Preview the code of a class or an interface

You can preview the code of a class or an interface in the Code Preview page
of the Property sheet of a class or an interface. You cannot edit the code in
this window.

� To preview the code of a class:

1 Double-click a class in the model.

The class property sheet appears.

2 Click the Code Preview tab.

The Code Preview page appears.

3 Click OK.

Defining classes

34

Displaying text in class symbols

You can define the following display preferences for a class:

Preference Description

Show attributes Displays all the attributes of the class, or limits the number
displayed to a maximum that you specify in the Limit box

Show operations Displays all the operations of the class, or limits the number
displayed to a maximum that you specify in the Limit box

Show stereotypes When selected, displays the stereotype of the class

Show constraints When selected, displays the constraints (types of business
rule) that are attached to the class

You modify the display preferences for a class in the Display Preferences
dialog box.

� To modify the class display preferences:

1 Select Tools➤ Display Preferences.
or
Right-click the diagram background and select Display Preferences from
the contextual menu.

The Display Preferences dialog box appears.

2 Expand the Object View node in the Category list.

3 Select Class.

Chapter 2 Building an Object-Oriented Model

35

The class display preferences page appears.

4 Modify the class display preferences.

5 Click OK.

Defining interfaces

36

Defining interfaces
An interface is a type of class that is similar to a class but which is used to
implement the specification of an abstraction of a class. An interface is a
collection of operations used to specify the externally visible behavior of a
class. It has no implementation of its own.

A class that implements all the operations in an interface is said to realize the
interface. A class that requires one or more operations in an interface is said
to use the interface. The interface includes the signatures of the operations of
the class. Usually, an interface specifies only a limited part of the behavior of
a class. A class can implement one or more interfaces.

The following example shows a Name (interface) that realizes the action
GetName for an Employee (class).

Interface properties

An interface has the following properties:

Property Description
Maximum
length

Name Name of the interface 254

Code Reference name for the interface 254

Comment Descriptive comment for the interface —

Stereotype Subclassification of an interface derived from an
existing one. Extends the semantics of an interface
without changing it's structure

—

Visibility Visibility of the interface, whose value denotes
how it may be seen outside its enclosing name
space

—

Generate Indicates that the class will be automatically
included among the objects generated from the
model when you launch the generation process

—

Chapter 2 Building an Object-Oriented Model

37

An interface definition also includes the following properties, which are
defined on associated property sheets:

Property Description

Attribute Defines the characteristics of an interface

Operations Carries out a service that effects behavior

Business rules A rule that your business follows. Business rules guide and
document the creation of a model

Analyzing interface properties

The visibility of an interface refers to the way in which it can be seen by
other objects. An interface that is visible to another object may influence the
structure or behavior of the object, or similarly, its own properties may be
affected by the other object.

Property Visible

Private Only to the interface itself

Protected Only to the interface and its inherited objects

Package To all objects contained within the same package

Public To all objects in workspace

Creating an interface

There are three ways to create an interface:

♦ Create an interface symbol in the Browser

♦ Create an interface symbol directly in a diagram

♦ Add a new interface to the list of classes

Creating an interface from the Browser

� To create an interface from the Browser:

1 Right-click the Interfaces category in the Browser.

2 Select New from the contextual menu.

Visibility

Defining interfaces

38

The property sheet of the interface appears.

3 Type an interface name and an interface code.

4 Click OK.

A new interface is created in the Interfaces category.

Creating an interface from the list of interfaces

� To create an interface by inserting it in the list:

1 Select Model➤ Interfaces.

The list of interfaces appears.

Accessing the list of interfaces
The list of interfaces is accessible only from a diagram. If the current
diagram is of a package, the list contains all the interfaces that exist in
the package. If the current diagram is of the model, the list contains
all the interfaces that exist in the model.

2 Click a blank line in the list.
or
Click the Add a Row tool.

An arrow appears at the beginning of the line.

3 Type a name and code for the interface.

4 Select a stereotype from the Stereotype dropdown listbox.

5 Select a visibility from the Visibility dropdown listbox.

6 Click OK.

A symbol for this interface is inserted in the current model.

Creating an interface from a diagram

� To create an interface in a diagram:

1 Click the Interface tool in the palette toolbar.

2 Click anywhere in the interface diagram.

Chapter 2 Building an Object-Oriented Model

39

The following symbol appears at the click position:

At creation, an interface is named Intfn, where n is a number assigned in
the order of the creation of objects.

3 Click the Pointer tool in the palette toolbar.

4 Double-click the new interface symbol in the diagram.

The interface property sheet appears.

5 Type an interface name and an interface code.

6 Click OK.

The newly created interface is visible in the Browser.

Modifying interface properties

There are two approaches to modifying interface properties:

♦ Modify an interface property sheet

♦ Modify an entry in the list of interface

Modifying interface properties from its property sheet

The interface property sheet displays the definition of an interface, which you
can modify.

� To modify interface properties from its property sheet:

1 Double-click the interface in the Browser.
or
Double-click the interface in the list of interfaces.
or
Double-click the interface in a diagram.

Defining interfaces

40

The interface property sheet opens to the General page.

Opening property sheets at last accessed page
Property sheets open to the General page by default. However, you
can choose to open property sheets at the last page accessed by
selecting Tools➤ Options➤ Dialog, and selecting the option Keep
Last Tab in the Property Sheets groupbox.

2 Type or select interface properties.
or
Click on a page tab.
Type or select interface properties as required.

3 Click OK.

Modifying interface properties from the list of interfaces

The list of interfaces includes all interfaces attached to the current model.
You can modify the interface properties from the list.

� To modify interface properties from the list of interfaces:

1 Select Model➤ Interfaces.

Chapter 2 Building an Object-Oriented Model

41

The list of interfaces appears.

2 Click the interface that you want to modify.

An arrow appears at the beginning of the line.

3 Modify any of the properties of the interface directly in the list.

4 Click OK.

Adding inner classes to an interface

An inner class is a class definition that is defined within another (outer) class
definition. Inner classes are commonly used in Java. They help you to
improve the overall visibility of your model by allowing you to group
together classes that logically belong together.

You can add inner classes to a class or an interface.

� For more information on inner classes, see the section Inner classes.

Adding objects to an interface

You can add an object to an interface, that already exists in the model, but
which belongs to another object.

Defining interfaces

42

You can add the following objects to an interface:

Object Description

Attribute Named property of an interface that defines the characteristics of
an interface

Operation Implementation of a service that can be requested from any
object of the interface in order to affect behavior

Business rule Written statement specifying what the information system must
do or how it must be structured to support business needs

You add an object to an interface from the list in the page corresponding to
the object, in the interface property sheet.

When you add an object to an interface in this way, you in fact create a copy
of the object. The new object exists as a unique object, and you can then
make changes to it as you would to any object in the model.

Adding an attribute to an interface

An attribute is a named property of an object that defines the characteristics
of the object.

You can add attributes to an interface that already exist in the model and
which belong to other objects.

� To add an attribute to an interface:

1 Double-click an interface in the model.

The interface property sheet appears.

2 Click the Attributes tab.

Chapter 2 Building an Object-Oriented Model

43

The Attributes page appears.

3 Click the Add Attributes tool.

The Selection window appears. It contains a list of all the attributes that
exist in the model, with the exception of those that already belong to the
interface.

4 Select the attributes that you want to add to the interface.

5 Click OK.

The attributes are added to the interface and appear in the list of
attributes for the interface.

Defining interfaces

44

6 Click OK.

Adding an operation to an interface

An operation is the implementation of a service that can be requested from
any object of the class in order to affect behavior.

You can add operations that already exist in the model and which belong to
other objects.

� To add an operation to an interface:

1 Double-click an interface in the model.

The interface property sheet appears.

2 Click the Operations tab.

The Operations page appears.

3 Click the Add Operations tool.

Chapter 2 Building an Object-Oriented Model

45

The Selection window appears. It contains a list of all the operations that
exist in the model, with the exception of those that already belong to the
interface.

4 Select the operations that you want to add to the interface.

5 Click OK.

The operations are added to the interface and appear in the list of
operations for the interface.

6 Click OK.

Preview the code of an interface

You can preview the code of an interface or a class in the Code Preview page
of the Property sheet of an interface. You cannot edit the code in this
window.

� To preview the code of an interface:

1 Double-click an interface in the model.

The interface property sheet appears.

2 Click the Code Preview tab.

Defining interfaces

46

The Code Preview page appears.

3 Click OK.

Displaying text in interface symbols

You can define the following display preferences for an interface:

Preference Description

Show attributes Displays all the attributes of the interface, or limits the
number displayed to a maximum that you specify in the Limit
box

Show operations Displays all the operations of the interface, or limits the
number displayed to a maximum that you specify in the Limit
box

Show stereotypes When selected, displays the stereotype of the interface

Show constraints When selected, displays the constraints (types of business
rule) attached to the interface

You modify the display preferences for an interface in the Display
Preferences dialog box.

Chapter 2 Building an Object-Oriented Model

47

� To modify the interface display preferences:

1 Select Tools➤ Display Preferences.
or
Right-click the diagram background and select Display Preferences from
the contextual menu.

The Display Preferences dialog box appears.

2 Expand the Object View node in the Category list.

3 Select Interface.

4 Modify the interface display preferences.

5 Click OK.

Defining attributes

48

Defining attributes
Attributes define the characteristics of a class. A class may have none or
several attributes. An attribute is a named property of a class that describes
the range of values that instances of the property may hold. Each object in a
class has the same attributes, but the values of the attributes may be different.

Attribute names within a class must be unique. You can give identical names
to two or more attributes only if they exist in different classes.

You can create attributes for the following objects of an OOM:

♦ Class

♦ Interface

You can attach attributes to an Identifier.

Chapter 2 Building an Object-Oriented Model

49

Attribute properties

An attribute has the following properties:

Property Description
Maximum
length

Parent Object to which the attribute belongs to 254

Name Name of the attribute 254

Code Reference name for the attribute 254

Comment Descriptive comment for the attribute —

Stereotype Subclassification of an attribute derived from an
existing one. Extends the semantics of an attribute
without changing it's structure

—

Data Type Set of instances that share the same operations,
abstract attributes, and relationships, and
semantics

—

Visibility Visibility of the attribute, whose value denotes
how it may be seen outside its enclosing name
space

—

Multiplicity Specification of the range of allowable
cardinalities that a set may assume

—

Initial value Initial value of the attribute —

Changeability Specifies that the value of the attribute cannot be
modified once the object has been initialized

—

Length Maximum number of characters —

Precision Number of places after the decimal point, for data
values that can take a decimal point

—

Domain Name of the associated domain —

Static Defines the attribute as static, meaning it cannot
be modified

—

Derived Indicates that the attribute is a calculated formula —

Identifier When selected, converts the attribute into a
primary key after generation of the OOM to a
PDM

—

Property When selected, converts the attribute into a
property after generating PowerBuilder objects
from the OOM

—

Defining attributes

50

An attribute definition also includes business rules, which are defined on
associated property sheets.

Analyzing attribute properties

The following attribute properties each have several default values from
which you can select from:

♦ Data Type

♦ Visibility

♦ Multiplicity

Data Type

You can select one of the following instances as a data type for an attribute:

Boolean
Byte
Char
Double
Float
Int
Long
Short

Visibility

Property Visible

Private Only to the attribute itself

Protected Only to the attribute and its inherited objects

Package To all objects contained within the same package

Public To all objects

Chapter 2 Building an Object-Oriented Model

51

Multiplicity

The cardinality of each of an attribute is called the multiplicity.

Cardinality Number of instances in relation

0..0 None

0..1 None or one

0..* None to infinity

1..1 One to one

1..* One to infinity

* Infinity

You can change the default format of cardinalities from the registry:

HKEY_CURRENT_USER\Software\Sybase\PowerDesigner
7\ModelOptions\Cld
MultiplicityNotation = 1 (0..1) or 2 (0,1)

Creating an attribute

There are three ways to create an attribute:

♦ Create an attribute symbol in the Browser

♦ Add a new attribute to the list of attributes

♦ Create an attribute from a class in a diagram

Creating an attribute from the Browser

� To create an attribute from the Browser:

1 Right-click the Attributes category in the Browser.

2 Select New from the contextual menu.

Defining attributes

52

The property sheet of the attribute appears.

3 Type an attribute name and an attribute code.

4 Click OK.

A new attribute is created in the Attributes category.

Creating an attribute from the list of attributes

� To create an attribute by inserting it in the list:

1 Select Model➤ Attributes.

The list of attributes appears.

Accessing the list of attributes
The list of attributes is accessible only from a diagram. If the current
diagram is of a package, the list contains all the attributes that exist in
the package. If the current diagram is of the model, the list contains
all the attributes that exist in the model.

2 Click a blank line in the list.
or
Click the Add a Row tool.

An arrow appears at the beginning of the line.

Chapter 2 Building an Object-Oriented Model

53

3 Type an attribute name and an attribute code.

4 Click the Stereotype column.

5 Select a stereotype from the Stereotype dropdown listbox.
or
Type a stereotype in the Stereotype column.

6 Click the Data Type column.

7 Select a data type from the Data Type dropdown listbox.
or
Type a data type in the Data Type column.

8 Click the Visibility column.

9 Select a value from the Visibility dropdown listbox.

10 Click the Multiplicity column.

11 Select a cardinality value from the Multiplicity dropdown listbox.
or
Type a cardinality value in the Multiplicity column.

12 Type the name of the class to which you want to associate the attribute in
the Parent column.

13 Click OK.

The attribute is created for the class.

Creating an attribute from a class in a diagram

You can create an attribute from a class or an interface in a diagram in the
same way.

� To create an attribute from a class in a diagram:

1 Double-click a class in the model.

The class property sheet appears.

2 Click the Attributes tab.

Defining attributes

54

The Attributes page appears. It lists attributes defined for the class.

3 Click a blank line in the list.
or
Click the Add a Row tool.

An arrow appears at the beginning of the line.

4 Type an attribute name and an attribute code.

5 Click OK.

The attribute is created for the class and appears in the list of attributes
for the class.

6 Click OK.

Modifying attribute properties

There are two approaches to modifying attribute properties:

♦ Modify the property sheet of an attribute

♦ Modify an entry in the list of attributes

Chapter 2 Building an Object-Oriented Model

55

Modifying attribute properties from its property sheet

The attribute property sheet displays the definition of the attribute, which you
can modify.

� To modify attribute properties from its property sheet:

1 Double-click the attribute in the model.

The attribute property sheet appears.

Opening property sheets at last accessed page
Property sheets open to the General page by default. However, you
can choose to open property sheets at the last page accessed by
selecting Tools➤ Options➤ Dialog, and selecting the option Keep
Last Tab in the Property Sheets groupbox.

2 Type or select attribute properties as required.

3 Click on the Detail tab.

Defining attributes

56

The general properties of the attribute, in addition to those on the general
page, appear.

4 Type or select attribute properties as required.

5 Click OK.

Modifying attribute properties from the list of attributes

The list of attributes includes all attributes attached to the current model. You
can modify the attribute properties from the list.

� To modify attribute properties from the list of attributes:

1 Select Model➤ Attributes.

Chapter 2 Building an Object-Oriented Model

57

The list of attributes appears.

2 Click the attribute that you want to modify.

An arrow appears at the beginning of the line.

3 Modify any of the properties of the attribute directly in the list.

4 Click OK.

Attaching an attribute to a domain

If you attach an attribute to a domain, the domain supplies the data type and
related data characteristics. It may also indicate check parameters, and
business rules.

� To attach an attribute to a domain:

1 Double-click a class in the model.

The class property sheet appears.

2 Click the Attributes tab.

The Attributes page appears listing attributes associated with the class.

3 Click an attribute in the list.

An arrow appears at the beginning of the line.

4 Click the Properties tool.
or
Double click the arrow at the beginning of the line.

Defining attributes

58

The attribute property sheet opens to the General page.

Opening property sheets at last accessed page
Property sheets open to the General page by default. However, you
can choose to open property sheets at the last page accessed by
selecting Tools➤ Options➤ Dialog, and selecting the option Keep
Last Tab in the Property Sheets groupbox.

5 Click the Detail tab.

6 Select a domain from the Domain dropdown listbox at the bottom of the
dialog box.

7 Click OK.

You return to the Attributes page. In the Data Type attribute, the
domain’s data type replaces the data type previously defined for the
attribute.

8 Click OK.

Chapter 2 Building an Object-Oriented Model

59

Copying an attribute to another class

You can copy an attribute from one class and add it to another class. If the
class already contains an attribute with the same name or code as the copied
attribute, the copied attribute is renamed. For example the attribute
PERIPHLD is renamed PERIPHLD2 when it is copied to a class which
already contains an attribute PERIPHLD.

� To copy an attribute to another class:

1 Double-click a class in the model.

The class property sheet appears.

2 Click the Attributes tab.

The Attributes page appears.

3 Click the Add Attributes tool.

A selection box appears. It lists attributes attached to all other classes in
the model.

4 Select one or more attributes in the list.

5 Click OK.

The copied attributes appear in the list of attributes for the current class.

6 Click OK.

Defining attributes

60

Displaying text in attribute symbols

An attribute has the following display preferences:

Preference Description

Show visibility Displays the attribute as an icon, with markers, or using
keywords

Show datatype When selected, displays the datatype of the attribute in the
attribute symbol

Show initial value When selected, displays the initial value of the attribute in the
attribute symbol

The visibility of an attribute in a class or an interface can be displayed in one
of the following ways:

Visibility When selected

Icon Displays the attribute as an icon

Markers Displays the visibility of the attribute as a marker:
- (private), # (protected), + (public), or * (package)

Keywords Displays the visibility of the attribute as a word:
private, protected, public, or package

You modify the display preferences for an attribute in the Display
Preferences dialog box.

� To modify the display preferences:

1 Select Tools➤ Display Preferences.
or
Right-click the diagram background and select Display Preferences from
the contextual menu.

The Display Preferences dialog box appears.

2 Expand the Object View node in the Category list.

Chapter 2 Building an Object-Oriented Model

61

3 Select Attribute.

4 Modify the attribute display preferences.

5 Click OK.

Defining identifiers

62

Defining identifiers
An identifier is a class attribute, or a combination of class attributes, whose
values uniquely identify each occurrence of the class. An identifier is the
OOM equivalent of a CDM identifier or a primary key or an alternate key in
a PDM.

Each class must have at least one identifier. If a class has only one identifier,
than it is designated by default as the primary identifier for the class. A
primary identifier is the main identifier for a class.

You can attach attributes or business rules to an identifier.

Identifier properties

An identifier has the following properties:

Property Description
Maximum
length

Name Name of the identifier 254

Code Reference name for the identifier 254

Comment Descriptive comment for the identifier —

Class Name of the class to which the identifier belongs to 254

Primary
identifier

Indicates that the identifier is the primary identifier of
the class. There can only be one primary identifier for
a given class

—

An identifier definition also includes the following properties, which are
defined on associated property sheets:

Property Description

Attribute Defines the characteristics of an identifier

Business rules A rule that your business follows. Business rules guide and
document the creation of a model

Chapter 2 Building an Object-Oriented Model

63

Creating an identifier

You can create an identifier from a class.

� To create an identifier:

1 Double-click a class in the model.

The class property sheet opens to the General page.

2 Click the Identifier tab.

The Identifier page appears.

3 Click a blank line in the list.
or
Click the Add a Row tool.

An arrow appears at the beginning of the line.

4 Type a name and code for the identifier.

5 Click OK.

Defining identifiers

64

Adding attributes to an identifier

You can add attributes to an identifier.

� To add attributes to an identifier:

1 From the identifier property sheet, click the Attributes tab.

The Attributes page appears. It lists the attributes currently defined for
the identifier.

2 Click the Add Attributes tool.

A list of attributes defined for the class appears.

Chapter 2 Building an Object-Oriented Model

65

3 Select checkboxes for one or more class attributes that you want to
designate as an identifier.

4 Click OK in each of the dialog boxes.

Modifying identifier properties

There are two approaches to modifying identifier properties:

♦ Modify the property sheet of an identifier

♦ Modify an entry in the list of identifiers

Modifying identifier properties from its property sheet

The identifier property sheet displays the definition of the identifier, which
you can modify.

� To modify identifier properties from its property sheet:

1 Double-click the identifier in the model.

The identifier property sheet appears.

Defining identifiers

66

Opening property sheets at last accessed page
Property sheets open to the General page by default. However, you
can choose to open property sheets at the last page accessed by
selecting Tools➤ Options➤ Dialog, and selecting the option Keep
Last Tab in the Property Sheets groupbox.

2 Type or select identifier properties as required.

3 Click OK.

Modifying identifier properties from the list of identifiers

The list of identifiers includes all identifiers attached to the current model.
You can modify the identifier properties from the list.

� To modify identifier properties from the list of identifiers:

1 Select Model➤ Identifiers.

The list of Identifiers appears.

2 Click the identifier that you want to modify.

An arrow appears at the beginning of the line.

3 Modify any of the properties of the identifier directly in the list.

4 Click OK.

Chapter 2 Building an Object-Oriented Model

67

Defining operations
An operation is a service that can be requested from an object to effect
behavior. It has a name and a list of parameters. An operation is a
specification of a transformation or query that an object may be called to
execute.

Operation names within a class must be unique. You can give identical names
to two or more operations only if they exist in different classes.

Operation properties

An operation has the following properties:

Property Description
Maximum
length

Parent Object to which the operation belongs to 254

Name Name of the operation 254

Code Reference name for the operation 254

Comment Descriptive comment for the operation —

Stereotype Subclassification of an operation derived from an
existing one. Extends the semantics of an operation
without changing it's structure

—

Return Type A list of values returned by a call of the operation.
If there are no values returned by the operation, the
return type value is null

—

Visibility Visibility of the operation, whose value denotes
how it may be seen outside its enclosing name
space

—

Event Significant occurrence that has a location in time
and space. An event can trigger a state transition

—

Abstract Indicates that the operation cannot be instantiated
and therefore has no direct instances

—

Final Indicates that the operation cannot be redefined —

Static Defines the operation as static, meaning it cannot
be modified

—

An operation definition also includes business rules, and parameters, which
are defined on associated property sheets.

Defining operations

68

Analyzing operation properties

The following operation properties each have several default values from
which you can select from:

♦ Visibility

♦ Stereotype

Visibility

Property Visible

Private Only to the operation itself

Protected Only to the operation and its inherited objects

Package To all objects contained within the same package

Public To all objects

Stereotype

Stereotype Description

constructor Operation that creates and initializes an instance of a class

Creating an operation

There are three ways to create an operation:

♦ Create an operation symbol in the Browser

♦ Add a new operation to the list of operations

♦ Create an operation from a class in a diagram

Creating an operation from the Browser

� To create an operation from the Browser:

1 Right-click the Operations category in the Browser.

2 Select New from the contextual menu.

The property sheet of the operation appears.

Chapter 2 Building an Object-Oriented Model

69

3 Type an operation name and an operation code.

4 Click OK.

A new operation is created in the Operations category.

Creating an operation from the list of operations

� To create an operation by inserting it in the list:

1 Select Model➤ Operations.

The list of operations appears.

Accessing the list of operations
The list of operations is accessible only from a diagram. If the current
diagram is of a package, the list contains all the operations that exist
in the package. If the current diagram is of the model, the list contains
all the operations that exist in the model.

2 Click a blank line in the list.
or
Click the Add a Row tool.

An arrow appears at the beginning of the line.

3 Type an operation name and an operation code.

4 Click the Stereotype column.

5 Select a stereotype from the Stereotype dropdown listbox.
or
Type a stereotype in the Stereotype column.

6 Click the Return Type column.

7 Select a return type from the Return Type dropdown listbox.
or
Type a return type in the Return Type column.

8 Click the Visibility column.

9 Select a value from the Visibility dropdown listbox.

10 Click OK.

The operation is created for the class.

Defining operations

70

Creating an operation from a class in a diagram

You can create an operation from a class or an interface in a diagram in the
same way.

� To create an operation from a class in a diagram:

1 Double-click a class in the model.

The class property sheet appears.

2 Click the Operations tab.

The Operations page appears. It lists operations defined for the class.

3 Click a blank line in the list.
or
Click the Add a Row tool.

An arrow appears at the beginning of the line.

4 Type an operation name and an operation code.

5 Click OK.

The operation is created for the class and appears in the list of operations
for the class.

6 Click OK.

Chapter 2 Building an Object-Oriented Model

71

Modifying operation properties

There are two approaches to modifying operation properties:

♦ Modify the property sheet of an operation

♦ Modify an entry in the list of operations

Modifying operation properties from its property sheet

The operation property sheet displays the definition of the operation that you
can modify.

� To modify operation properties from its property sheet:

1 Double-click a class in the model.

The class property sheet appears.

2 Click the Operations tab.

The Operations page appears. It lists operations associated with the
class.

3 Click the operation that you want to define.

An arrow appears at the beginning of the line.

4 Click the Properties tool.
or
Double-click the arrow at the beginning of the line.

Defining operations

72

The operation property sheet opens to the General page.

Opening property sheets at last accessed page
Property sheets open to the General page by default. However, you
can choose to open property sheets at the last page accessed by
selecting Tools➤ Options➤ Dialog, and selecting the option Keep
Last Tab in the Property Sheets groupbox.

5 Type or select operation properties.
or
Click on a page tab.
Type or select operation properties as required.

6 Click OK.

Modifying operation properties from the list of operations

The list of operations includes all operations attached to the current model.
You can modify the operation properties from the list.

� To modify operation properties from the list of operations:

1 Select Model➤ Operations.

Chapter 2 Building an Object-Oriented Model

73

The list of operations appears.

2 Click the operation that you want to modify.

An arrow appears at the beginning of the line.

3 Modify any of the properties of the operation directly in the list.

4 Click OK.

Adding constructors and destructors to a class

A constructor is a special type of operation that creates and initializes an
instance of a class.

A destructor, on the other hand, is the complement of a constructor in that it
is an operation that it deinitializes and destroys the class instance. You can
only create a default destructor for a given class, and only if the current
object language for the OOM is PowerBuilder.

You can create constructors and destructors only from a class, from the
Operations page of the class property sheet.

Constructor and destructor names are assigned automatically by
PowerDesigner and you cannot modify them.

You cannot declare a Return Type for a constructor.

Defining operations

74

You can create two types of constructor for a given class:

Default
Copy

A Default constructor has no parameters.

Adding a Default constructor and destructor to a class

You can define only one Default constructor and one Default destructor
(PowerBuilder only) for any given class.

If the current object language of the OOM is Analysis or Java, you can create
only one Default constructor and no Default destructor for a class. The
constructor has the same name as the class to which it belongs.

If the current object language of the OOM is PowerBuilder, you can create
one Default constructor and one Default destructor for a class. The
constructor has the name "constructor" and destructor has the name
"destructor".

� To add a Default constructor and destructor to a class:

1 Double-click a class in the model.

2 Click the Operations tab.

3 Click the Add button.

4 Select Default Constructor/Destructor from the dropdown list.

Chapter 2 Building an Object-Oriented Model

75

If the current object language of the OOM is Analysis or Java, a Default
constructor is created at the end of the list of operations for the class. It
has the same name as the class to which it belongs:

If the current object language of the OOM is PowerBuilder, a Default
constructor and a Default destructor is created at the end of the list of
operations for the class. They have the names constructor and destructor:

Defining operations

76

Adding a Copy constructor to a class

The body of a Copy constructor contains a copy of the attributes of the class
that exist at the moment of the creation of the constructor.

When you create a Copy constructor, it has the same as that of the class,
prefixed by the keyword new. It has a default parameter that you can modify,
or you can add other parameters.

If the class is an instance of another class, the attribute names within the body
of the Copy constructor operation are the same as those in the parent class.

You can define only one Copy constructor to any given class.

� To add a Copy constructor to a class:

1 Double-click a class in the model.

2 Click the Operations tab.

3 Click the Add button.

4 Select Copy Constructor from the dropdown list.

A Copy constructor is created at the end of the list of operations for the
class. It has the same name as the class to which it belongs.

Chapter 2 Building an Object-Oriented Model

77

Adding operations to a class

You can add an operation to a class in one of the following two ways:

♦ Add a duplicate operation

♦ Add an operation from a parent class

Adding a duplicate operation to a class

A duplicate operation is an operation that creates and initializes an instance
of a class within the class.

When you create a duplicate operation, it has the name Duplicate, which you
can modify.

You can define only one duplicate operation to any given class.

� To add a duplicate operation to a class:

1 Double-click a class in the model.

2 Click the Operations tab.

3 Click the Add button.

4 Select Duplicate Operation from the dropdown list.

A duplicate operation, the name Duplicate, is created at the end of the
list of operations for the class.

Defining operations

78

Adding an operation from a parent class

You can add to a class an operation that belongs to a parent class. The new
operation has the same signature (name and parameters) as the original
operation, but does not have its other properties.

Once you add an operation to a class in this way, you can modify only the
code implementation of the operation. You cannot modify the signature of
the operation.

� To add an inherited operation to a class:

1 Double-click a class that is linked to a parent class in the model.

2 Click the Operations tab.

3 Click the Inherited button.

The Inherited Operations window appears showing the operations that
belong to all the parent classes of the class.

4 Select an operation.

5 Click the Override button.

Chapter 2 Building an Object-Oriented Model

79

A copy of the operation is added to the list operations for the class.

Adding Getter and Setter operations to a class

Getter or a Setter operations are special types of operations that you create
for an attribute. You create a Getter or a Setter operation type from the list of
attributes of a class. For each attribute, you can create one Getter, one Setter
operation, or both a Getter and a Setter operation.

You create Getter or a Setter operations for sending a receiving data values
between fields.

Operation Description

Getter Returns a value from a field

Setter Puts a value into a field

� To add a Getter and a Setter operation to a class from an attribute:

1 Double-click a class in the model.

The class property sheet appears.

2 Click the Attributes tab.

The Attributes page appears.

3 Select one or more attributes.

Defining operations

80

4 Click the Add button.

5 Select Get/Set Operations from the dropdown listbox.

The operations are created for the attributes. You can visualize them in
the list of operations of the class.

6 Select the Operations tab.

Chapter 2 Building an Object-Oriented Model

81

The newly created operations appear at the bottom of the list of
operations for the class. They are grayed indicating that their names can
not be modified.

7 Click OK.

Creating an implementation operation

When you create a realization link between a class and an interface in which
the class implements the interface, you create an operation in the class that
implements the interface.

Defining operations

82

� To create an implementation operation:

1 Double-click a class that is linked to an interface by a realization link.

2 Click the Operations tab.

3 Click the To be implemented button.

The To Be Implemented Operations window appears. It contains a list of
all the operations of the interface that can be implemented from the class.

4 Select an operation from the list.

5 Click the Implement button.

A copy of the operation is created in the class.

Chapter 2 Building an Object-Oriented Model

83

6 Click Close.

The newly created operation is added to the end of the list of operations
for the class. It is grayed, indicating that its name cannot be modified.

7 Click OK.

Modifying the code of an implementation operation

You can modify the code of an implementation operation from the
Implementation page of the operation property sheet.

� For information on how to create an implementation operation, see the
section Creating an implementation operation.

� To modify the code of an implementation operation:

1 Double-click an implementation operation in the list of operations of a
class that implements an interface.

2 Click the Implementation tab.

Defining operations

84

The Implementation page appears.

3 Type or modify code directly in the window.
or
Click a tab at the bottom of the edit window and type or modify code.

4 Click OK.

Copying an operation to another class

You can copy an operation from one class and add it to another class. If the
class already contains an operation with the same name or code as the copied
operation, the copied operation is renamed. For example the operation
testPort is renamed testPort2 when it is copied to a class which already
contains an operation testPort .

� To copy an operation to another class:

1 Double-click a class in the model.

The class property sheet appears.

2 Click the Operations tab.

The Operations page appears.

3 Click the Add Operations tool.

Chapter 2 Building an Object-Oriented Model

85

A selection box appears. It lists operations attached to all other classes in
the model.

4 Select one or more operations in the list.

5 Click OK.

The copied operations appear in the list of operations for the current
class.

6 Click OK.

Displaying text in operation symbols

An operation has the following display preferences:

Preference Description

Show visibility Displays the operation as an icon, with markers, or using
keywords

Show return type When selected, displays the return type of the operation in
the operation symbol

Show parameters When selected, displays the parameters of the operation in
the operation symbol

Defining operations

86

The visibility of an operation in a class or an interface can be displayed in
one of the following ways:

Visibility When selected

Icon Displays the operation as an icon

Markers Displays the visibility of the operation as a marker:
- (private), # (protected), + (public), or * (package)

Keywords Displays the visibility of the operation as a word:
private, protected, public, or package

You modify the display preferences for an operation in the Display
Preferences dialog box.

� To modify the display preferences:

1 Select Tools➤ Display Preferences.
or
Right-click the diagram background and select Display Preferences from
the contextual menu.

The Display Preferences dialog box appears.

2 Expand the Object View node in the Category list.

3 Select Operation.

Chapter 2 Building an Object-Oriented Model

87

4 Modify the operation display preferences.

5 Click OK.

Defining parameters

88

Defining parameters
A parameter is a specification of a variable that can be changed, passed, or
returned. Parameters are used only for operations.

A parameter always has a direction, which indicates the flow of information.

Parameter properties

A parameter has the following properties:

Property Description
Maximum
length

Parent Operation to which the parameter belongs to 254

Name Name of the parameter 254

Code Reference name for the parameter 254

Comment Descriptive comment for the parameter —

Data Type Set of instances that share the same operations,
abstract attributes, and relationships, and semantics

—

Array Used in generating and reverse engineering for Java
and PowerBuilder. When selected, arranges attributes
into table format

—

Parameter
Type

Direction of information flow of the parameter 254

The choice you make in the Direction dropdown listbox indicates what value
is returned when the parameter is called by the operation during the execution
process.

You can set the following values for the direction:

Value Description

In Input parameter passed by value. The final value may not be modified
and information is not available to the caller

In\Out Input parameter that may be modified. The final value may be modified
to communicate information to the caller

Out Output parameter. The final value may be modified to communicate
information to the caller

Direction

Chapter 2 Building an Object-Oriented Model

89

Creating a parameter

You can create parameters only from an operation. You create parameters
from the Parameters page in the operation property sheet.

� To create a parameter:

1 Double-click an operation in the model.

2 Click the Parameters tab.

The Parameters page appears.

3 Click the Add a Row tool
or
Click the first row.

A parameter is created.

4 Double-click the arrow at the beginning of the line.

A confirmation box appears asking you if you to confirm the creation of
the parameter.

5 Click OK

Defining parameters

90

The parameter property sheet opens to the General page.

Opening property sheets at last accessed page
Property sheets open to the General page by default. However, you
can choose to open property sheets at the last page accessed by
selecting Tools➤ Options➤ Dialog, and selecting the option Keep
Last Tab in the Property Sheets groupbox.

6 Type a name and code.

7 Select a value from the Direction dropdown listbox.

In/Out is the default direction value.

8 Click OK in all the open dialog boxes.

Chapter 2 Building an Object-Oriented Model

91

Defining generalizations
A generalization relationship between classes shows that the subclass shares
the structure or behavior defined in one or more superclasses. You use a
generalize to show a "is-a" relationship between classes.

You can create a generalization only from one class to another class, or from
one interface to another interface. You can also create a generalization
between a shortcut of a class to a class, or between a shortcut of a interface to
a interface. If the link is oriented, only the parent object can be the shortcut.

You can create only one generalization between two given objects.

Generalization properties

A generalization has the following properties:

Property Description
Maximum
length

Name Name of the generalization 254

Code Reference name for the generalization 254

Comment Descriptive comment for the generalization —

Parent Class or interface to which the generalization belongs
to

254

Child Class or interface that belongs to the generalization 254

Stereotype Subclassification of a generalization derived from an
existing one. Extends the semantics of a
generalization without changing it's structure

—

Visibility Visibility of the generalization, whose value denotes
how it may be seen outside its enclosing name space

—

Virtual Used in generation (except for Java and
PowerBuilder)

—

Defining generalizations

92

Analyzing generalization properties

The following generalization properties each have several default values
from which you can select from:

♦ Visibility

♦ Stereotype

Visibility

Property Visible

Private Only to the generalization itself

Protected Only to the generalization and its inherited objects

Package To all objects contained within the same package

Public To all objects

Stereotype

Stereotype Description

implementation Specifies that the child object inherits the implementation of
the parent object but that it does not make public its interfaces,
nor support them, thus violating its substitutability

Creating a generalization

You can create a generalization only from a class to a class, or from an
interface to an interface.

� To create a generalization:

1 Click the Generalization tool in the palette toolbar.

2 Drag the generalization from the child class to the parent class, or from
the child interface to the parent interface.

Chapter 2 Building an Object-Oriented Model

93

The link appears between the two objects.

Dragging a generalization to a different class
You can change the class or interface at either end of a generalization
by clicking the generalization to select it, pressing down CTRL, and
dragging one of the attach points to a different class or interface.

3 Click the Pointer tool in the palette toolbar.
or
Click the right mouse button.

You release the Generalization tool.

4 Double-click the new generalization in the model.

The generalization property sheet opens to the General page.

Opening property sheets at last accessed page
Property sheets open to the General page by default. However, you
can choose to open property sheets at the last page accessed by
selecting Tools➤ Options➤ Dialog, and selecting the option Keep
Last Tab in the Property Sheets groupbox.

5 Type a generalization name and a generalization code.

6 Click OK.

Defining generalizations

94

Modifying generalization properties

There are two approaches to modifying generalization properties:

♦ Modify the property sheet of the generalization

♦ Modify an entry in the list of generalizations

Modifying generalization properties from its property sheet

The generalization property sheet displays the definition of the
generalization, which you can modify.

� To modify generalization properties from its property sheet:

1 Double-click the generalization in the model.

The generalization property sheet appears.

2 Type or select generalization properties.
or
Click on a page tab.
Type or select generalization properties as required.

3 Click OK.

Chapter 2 Building an Object-Oriented Model

95

Modifying generalization properties from the list of generalizations

The list of generalizations includes all generalizations attached to the current
model. You can modify the generalization properties from the list.

� To modify generalization properties from the list of generalizations:

1 Select Model➤ Generalizations.

The list of generalizations appears.

2 Click the generalization that you want to modify.

An arrow appears at the beginning of the line.

3 Modify any of the properties of the generalization directly in the list.

4 Click OK.

Displaying text in generalization symbols

A generalization has the following display preferences:

Preference When selected

Show name Displays the name of the generalization

Show stereotypes Displays the stereotypes of the generalization

Show constraints Displays the constraints (business rules) of the generalization

Defining generalizations

96

You modify the display preferences for a generalization in the Display
Preferences dialog box.

� To modify the display preferences:

1 Select Tools➤ Display Preferences.
or
Right-click the diagram background and select Display Preferences from
the contextual menu.

The Display Preferences dialog box appears.

2 Expand the Object View node in the Category list.

3 Select Generalization.

The Generalization display preferences appears.

4 Modify the generalization display preferences.

5 Click OK.

Chapter 2 Building an Object-Oriented Model

97

Defining associations
An association represents a structural relationship between objects of
different classes. An association is drawn as a solid line between pairs of
classes.

You can define an association between two classes, or between a class and an
interface.

An association may have a name to clarify the nature of the relationship
between the associated classes. The name of the association is usually
omitted when end names are used.

Each end of an association may have a name that describes the role that each
class plays as viewed by the opposite class.

Association Ends

Defining associations

98

Association properties

An association has the following properties:

Property Description
Maximum
length

Name Name of the association 254

Code Reference name for the association 254

Comment Descriptive comment for the association —

Stereotype Subclassification of an association derived from
an existing one. Extends the semantics of an
association without changing it's structure

—

Aggregation/
composition

Indicates whether the association is an
aggregation or a composition

—

Role A One end of an association. Each role can have a
name and a cardinality. You can make a role
navigable or not, or change its visibility

254

Role B One end of an association. Each role can have a
name and a cardinality. You can make a role
navigable or not, or change its visibility

254

Multiplicity Minimum and maximum number of instances that
the association can have

—

Ordering Indicates that the association is included in the
ordering that sorts the list of associations by their
order of creation.

—

Navigable Indicates whether or not information can be
transmitted between the two objects that are
linked by the relationship

—

Changeability Specifies if the value of the association can be
modified or not once the object has been
initialized

—

Visibility Visibility of the association, whose value denotes
how it may be seen outside its enclosing name
space

—

Chapter 2 Building an Object-Oriented Model

99

Creating an association

You can create an association between two classes or between a class and an
interface:

♦ in a diagram

♦ from the list of associations

♦ from the Browser

Creating an association outside of a diagram
When you create an association from the list of associations or from the
Browser, you must select the two classes that are linked by the association.

� To create an association in a diagram:

1 Click the Association tool in the palette toolbar.

2 Drag the association link from one class to another.

The link appears between the two classes.

Dragging an association to a different class
You can change the class at either end of an association by clicking
the association to select it, pressing down CTRL, and dragging one of
the attach points to a different class.

3 Click the Pointer tool in the palette toolbar.
or
Click the right mouse button.

You release the Association tool.

4 Double-click the new association in the model.

Defining associations

100

The association property sheet opens to the General page.

Opening property sheets at last accessed page
Property sheets open to the General page by default. However, you
can choose to open property sheets at the last page accessed by
selecting Tools➤ Options➤ Dialog, and selecting the option Keep
Last Tab in the Property Sheets groupbox.

5 Type an association name and an association code.

6 Type a name and code for Role A.

7 Type a name and code for Role B.

8 Click OK.

Analyzing cardinality properties

Each end of an association is called a Role. A role has its own properties and
cardinality. You can define one of the two roles as being an aggregation or a
composition.

Chapter 2 Building an Object-Oriented Model

101

Association role properties

You can define the following properties for each of the two roles of an
association:

♦ Multiplicity

♦ Ordering

♦ Visibility

Multiplicity

The cardinality of each of the two roles of an association is called the
multiplicity. The multiplicity indicates the maximum and minimum number
of values each role can have.

Cardinality Number of instances

0..0 None

0..1 None or one

0..* None to infinity

1..1 One to one

1..* One to infinity

* Infinity

Ordering

You can define the ends of an association as being ordered or sorted.

Property Indicates

Sorted That the set of objects at the end of an association are arranged
according to the way they are defined in the model

Ordered That the set of objects at the end of an association are arranged
according to in a specific order

Unordered That the end of the association is neither sorted nor ordered

Defining associations

102

Visibility

The visibility of an association refers to the way in which it can be seen by
other objects. An association that is visible to another object may influence
the structure or behavior of the object, or similarly, its own properties may be
affected by the other object.

Property Visible

Private Only to the association itself

Protected Only to the association and its inherited objects

Package To all objects contained within the same package

Public To all objects

Aggregation/composition of an Association

You can define one of the roles of an association as being either an
aggregation or a composition in the Aggregation/composition group box.

Property Description

Aggregation An form of association that specifies the relationship between two
classes of the same level

Composition A form of aggregation of an association in which the class attached
to the association role may be a part of only one composite at a time

Container Specifies which of the two roles is an aggregation or a composition

Indicator Indicates that the association is an aggregation or a composition

Changing an association into an associative class

You can transform an association into an associative class linked by two
associations. Next, you can attach class attributes to this associative class,
that you could not attach to the association.

The associative class gets the name and code of the association. You can
define cardinality properties for each of the two associations created between
the new class and the two existing classes.

� To change an association into an associative class:

1 Right-click an association.

Chapter 2 Building an Object-Oriented Model

103

The association context menu appears.

2 Select Change to Class from the context menu.

An associative class with two associations replaces the association. The
associative class takes the name of the original association.

Modifying association properties

There are two approaches to modifying association properties:

♦ Modify the property sheet of an association

♦ Modify an entry in the list of associations

Modifying association properties from its property sheet

The association property sheet displays the definition of the association,
which you can modify.

� To modify association properties from its property sheet:

1 Double-click the association in the model.

The association property sheet appears.

2 Type or select association properties.
or
Click on a page tab.
Type or select association properties as required.

Defining associations

104

3 Click OK.

Modifying association properties from the list of associations

The list of associations includes all associations attached to the current
model. You can modify the association properties from the list.

� To modify association properties from the list of associations:

1 Select Model➤ Associations.

The list of associations appears.

2 Click the association that you want to modify.

An arrow appears at the beginning of the line.

3 Modify any of the properties of the association directly in the list.

4 Click OK.

Modifying cardinality properties

The Cardinality page of the association property sheet displays the definition
of the roles, which you can modify.

� To modify association cardinality properties:

1 Double-click the association in the model.

Chapter 2 Building an Object-Oriented Model

105

The association property sheet appears.

2 Click the Cardinality tab.

The Cardinality page appears.

3 Select properties for role A and for Role B.

4 Select the Aggregation/Composition checkbox.

5 Select Aggregation/Composition group box options.

6 Click OK.

Defining associations

106

Displaying text in association symbols

You can define the following display preferences for an association:

Preference Description

Show name When selected, displays the name of the association

Show constraints When selected, displays the constraints (business rules) of the
association

Show role names When selected, displays the name of the association roles

Name attached to
its symbol

When selected, the name of the role remains attached to it
when it is moved. When not selected, role name can be
moved anywhere in the model

Multiplicity Displays the cardinality of the relationship. You can choose
between showing the actual number of instances (String)or
the symbol at the end of the relationship (Symbol)

You modify the display preferences for an association in the Display
Preferences dialog box.

� To modify the association display preferences:

1 Select Tools➤ Display Preferences.
or
Right-click the diagram background and select Display Preferences from
the contextual menu.

The Display Preferences dialog box appears.

2 Expand the Object View node in the Category list.

3 Select Association.

Chapter 2 Building an Object-Oriented Model

107

The Association display preferences appears.

4 Modify the association display preferences.

5 Click OK.

Defining dependencies

108

Defining dependencies
A dependency is a relationship between two modeling elements, in which a
change to one modeling element (the independent element) will affect the
other modeling element (the dependent element).

The dependency relationship indicates that one class or interface in a
component diagram uses the services or facilities of another class or
interface.

Dependency properties

A dependency has the following properties:

Property Description
Maximum
length

Name Name of the dependency 254

Code Reference name for the dependency 254

Comment Descriptive comment for the dependency —

Independent Indicates that the two objects linked by the
dependency are totally independent from one
another

254

Dependant Indicates that the two objects linked by the
dependency are dependant, and therefore any
changes in one object will affect the other

254

Stereotype Pre-defined or user defined instance of the
dependency

—

Parent Name of the parent object of the dependency 254

Child Name of the child object of the dependency 254

Chapter 2 Building an Object-Oriented Model

109

Analyzing dependency properties

You can select a stereotype for a dependency from the following several
default values:

Stereotype Description

access Public contents of the target package that can by accessed by the
source package

bind Source object that instantiates the target template using the given
actual parameters

call Source operation that invokes the target operation

derive Source object that can be computed from the target

friend Source object that has special visibility towards the target

import Everything that is declared as public in the target object becomes
visible to the source object, as if it were part of the source object
definition

include Source use case incorporates the behavior of another use case at a
location that is specified by the source

instantiate Specifies that operations on the source class create instances of the
target class

refine Degree of abstraction of the source object is finer than that of the
target object

trace Specifies that there is an historical link between the source object
and the target object

use Specifies that the semantics of the source object are dependent on
the semantics of the public part of the target object

Creating a dependency

You can create a dependency between two classes, two interfaces, or between
a class and an interface. You create dependencies in a diagram.

� To create a dependency:

1 Click the Dependency tool in the palette toolbar.

2 Drag the dependency link from the child class or interface to the parent
class or interface.

Stereotype

Defining dependencies

110

The link appears between the two objects.

Dragging a dependency to a different class
You can change the class at either end of a dependency by clicking
the dependency to select it, pressing down CTRL, and dragging one of
the attach points to a different class.

3 Click the Pointer tool in the palette toolbar.
or
Click the right mouse button.

You release the Dependency tool.

4 Double-click the new dependency in the model.

The dependency property sheet opens to the General page.

Opening property sheets at last accessed page
Property sheets open to the General page by default. However, you
can choose to open property sheets at the last page accessed by
selecting Tools➤ Options➤ Dialog, and selecting the option Keep
Last Tab in the Property Sheets groupbox.

5 Type a dependency name and a dependency code.

6 Select a stereotype from the dropdown listbox.

7 Click OK.

Chapter 2 Building an Object-Oriented Model

111

Modifying dependency properties

There are two approaches to modifying dependency properties:

♦ Modify the property sheet of a dependency

♦ Modify an entry in the list of dependencies

Modifying dependency properties from its property sheet

The dependency property sheet displays the definition of the dependency,
which you can modify.

� To modify dependency properties from its property sheet:

1 Double-click the dependency in the model.

The dependency property sheet opens to the General page.

Opening property sheets at last accessed page
Property sheets open to the General page by default. However, you
can choose to open property sheets at the last page accessed by
selecting Tools➤ Options➤ Dialog, and selecting the option Keep
Last Tab in the Property Sheets groupbox.

2 Type or select dependency properties.
or
Click on a page tab.
Type or select dependency properties as required.

Defining dependencies

112

3 Click OK.

Modifying dependency properties from the list of dependencies

The list of dependencies includes all dependencies attached to the current
model. You can modify the dependency properties from the list.

� To modify dependency properties from the list of dependencies:

1 Select Model➤ Dependencies.

The list of dependencies appears.

2 Click the dependency that you want to modify.

An arrow appears at the beginning of the line.

3 Modify any of the properties of the dependency directly in the list.

4 Click OK.

Displaying text in dependency symbols

A dependency has the following display preferences:

Preference When selected

Show name Displays the name of the dependency

Show stereotypes Displays the stereotypes of the association

Show constraints Displays the constraints (business rules) of the association

Chapter 2 Building an Object-Oriented Model

113

You modify the display preferences for a dependency in the Display
Preferences dialog box.

� To modify the display preferences:

1 Select Tools➤ Display Preferences.
or
Right-click the diagram background and select Display Preferences from
the contextual menu.

The Display Preferences dialog box appears.

2 Expand the Object View node in the Category list.

3 Select Dependency.

The Dependency display preferences appears.

4 Modify the dependency display preferences.

5 Click OK.

Defining realizations

114

Defining realizations
A realization is a relationship between a class and an interface. It shows that
the class realizes the operations offered by the interface. In this kind of
relationship, the interface is called the specification element and the class is
called the implementation element. The class implements the specification of
the interface.

You can also create a realization between a shortcut of an interface and a
class, or between a shortcut of a class and a interface. If the link is oriented,
only the parent object can be the shortcut.

Although you can create more than one realization link between a class and
an interface, you should create only one, because the interface can only
realize one action for the class. When you generate from an OOM, if more
than one realization exists between a class and an interface, a warning
message is generated.

The arrowhead at one end of the realization always points towards the
interface.

Realization properties

A realization has the following properties:

Property Description
Maximum
length

Name Name of the realization 254

Code Reference name for the realization 254

Comment Descriptive comment for the realization —

Interface Name of the interface that carries out the realization 254

Class Name of the class that for which the realization is
carried out

254

Stereotype Pre-defined or user defined instance of the realization —

Chapter 2 Building an Object-Oriented Model

115

Creating a realization

You can create a realization only from a class to an interface.

� To create a realization:

1 Click the Realization tool in the palette toolbar.

2 Drag the realization from the class to the interface.

The link appears between the two objects.

Dragging a realization to a different class
You can change the class or interface at either end of a realization by
clicking the realization to select it, pressing down CTRL, and dragging
one of the attach points to a different class or interface.

3 Click the Pointer tool in the palette toolbar.
or
Click the right mouse button.

You release the Realization tool.

4 Double-click the new realization in the model.

The realization property sheet opens to the General page.

Defining realizations

116

Opening property sheets at last accessed page
Property sheets open to the General page by default. However, you
can choose to open property sheets at the last page accessed by
selecting Tools➤ Options➤ Dialog, and selecting the option Keep
Last Tab in the Property Sheets groupbox.

5 Type a realization name and a realization code.

6 Select a stereotype from the dropdown listbox.

7 Click OK.

Modifying realization properties

There are two approaches to modifying realization properties:

♦ Modify the property sheet of a realization

♦ Modify an entry in the list of realizations

Modifying a realization from its property sheet

The realization property sheet displays the definition of the realization, which
you can modify.

Chapter 2 Building an Object-Oriented Model

117

� To modify realization properties from its property sheet:

1 Double-click the realization in the model.

The realization property sheet appears.

2 Type or select realization properties.
or
Click on a page tab.
Type or select realization properties as required.

3 Click OK.

Defining realizations

118

Modifying a realization from the list of realizations

The list of realizations includes all realizations attached to the current model.
You can modify the realization properties from the list.

� To modify realization properties from the list of realizations:

1 Select Model➤ Realizations.

The list of realizations appears.

2 Click the realization that you want to modify.

An arrow appears at the beginning of the line.

3 Modify any of the properties of the realization directly in the list.

4 Click OK.

Displaying text in realization symbols

A realization has the following display preferences:

Preference When selected

Show name Displays the name of the realization

Show stereotypes Displays the stereotypes of the realization

Show constraints Displays the constraints (business rules) of the realization

Chapter 2 Building an Object-Oriented Model

119

You modify the display preferences for a realization in the Display
Preferences dialog box.

� To modify the display preferences:

1 Select Tools➤ Display Preferences.
or
Right-click the diagram background and select Display Preferences from
the contextual menu.

The Display Preferences dialog box appears.

2 Expand the Object View node in the Category list.

3 Select Realization.

The Realization display preferences appears.

4 Modify the realization display preferences.

5 Click OK.

Defining domains

120

Defining domains
Domains help you identify the types of information in your project. They
define the set of values for which an attribute is valid. Applying domains to
attributes makes it easier to standardize data characteristics for attributes in
different classes.

In an OOM, you can associate the following information with a domain:

♦ Data type, length, and precision

♦ Check parameters

♦ Business rules

Domain properties

Each domain definition includes the following properties:

Property Description
Maximum
length

Name Name for the domain 254

Code Reference name for the domain 254

Comment Descriptive label for the domain —

Data type Form of the data corresponding to the domain, such
as numeric, alphanumeric, Boolean, or others

—

Length Maximum number of characters —

Precision Number of places after the decimal point, for data
values that can take a decimal point

—

A domain definition can also include the following properties, which have
associated values or information used by attributes attached to the class:

Property Description

Standard checks Check parameters defined for the domain

Additional
checks

Domain constraints or validation rules not defined by standard
check parameters

Rules Business rules attached to the domain

Chapter 2 Building an Object-Oriented Model

121

Creating a domain

You create a domain from the list of domains.

Accessing the List of Domains
You can access the List of Domains from the current model, or by right
clicking the appropriate model node in the Browser, and selecting
New➤ Domain from the contextual menu.

� To create a domain:

1 Select Model➤ Domains.

The list of available domains appears.

2 Click a blank line in the list.
or
Click the Add a Row tool.

An arrow appears at the beginning of the line.

3 Type a domain name and a domain code.

4 Click Apply.

The creation of the new domain is committed.

5 Click the new domain line.

An arrow appears at the beginning of the line.

6 Click the Properties tool.
or
Double-click the arrow at the beginning of the line.

Defining domains

122

The property sheet for the new domain appears.

7 Select a data type.
Specify length and precision as required.

� For information on data types and selecting a data type for a
domain see the following sections Indicating data type, length, and
precision and Selecting a data type for a domain from the list.

8 Click on a page tab.
Type or select domain properties as required.

9 Click OK

You return to the List of Domains.

10 Click OK.
or
Click another domain line.

Indicating data type, length, and precision

The data types that you can select in a OOM depend on your current object
language.

The properties length and precision do not apply to all data types. Depending
on data type, length may indicate a maximum or a fixed number of
characters.

Length and
precision

Chapter 2 Building an Object-Oriented Model

123

In the list of available data types, a variable indicates where you have to type
a length or precision, as follows:

Variable Replace with

%n Length

%s Length with precision

%p Decimal precision

All object languages allow you to select the <undefined> data type. The
<undefined> data type indicates which domains remain without data types. If
an <undefined> data type is present when you generate your database, it is
replaced by the default data type for your database.

Selecting a data type for a domain

You can select a data type for a domain in two ways:

♦ Directly from the List of Domains

♦ From the property sheet for the domain

When you select a data type for a domain from its property sheet, you can
choose a data type from a list of standard data types available in
PowerDesigner. This list presents the available data types in a more
structured and complete format than the abbreviated format used in the data
type dropdown listbox in the list of domains.

Selecting a data type for a domain from the list

� To select a data type for a domain from the list:

1 Select Model➤ Domains.

The list of domains appears.

2 Click the domain that you want to define.

An arrow appears at the beginning of the line.

3 Click the Data Type attribute.

A dropdown listbox appears.

Undefined data
type

The list of standard
data types

Defining domains

124

4 Select a data type from the dropdown listbox.

Undefined data type
If you do not want to select a data type immediately, you can choose
the <Undefined> data type. When you generate Java or PowerBuilder
objects, this data type is replaced by the default data type for your
target object language.

5 Click OK.

Selecting a data type for a domain from its property sheet

� To select a data type for a domain from its property sheet:

1 Select Model➤ Domains.

The List of Domains appears.

2 Click the domain to define.

An arrow appears at the beginning of the line.

3 Click the Properties tool.
or
Double-click the arrow at the beginning of the line.

The domain property sheet appears.

4 Select a data type from the Data Type dropdown list box.

Selecting a data type from a list of standard data types
You can select a data type from a list of standard data types by
clicking the Question Mark button at the end of the Data Type
dropdown listbox, and selecting the radio button for a data type from
the list that appears.

5 Type the maximum number of characters for the data item in the Length
box.

6 If the data type can include values that take a decimal point, type the
number of places after the decimal point in the Precision box.

7 Click OK.

Chapter 2 Building an Object-Oriented Model

125

The change of data type appears in the list of domains.

Undefined data type
If you do not want to select a data type immediately, you can choose
the <Undefined> data type. When you generate the database, this data
type is replaced by the default data type for your target object
language.

Selecting a data type from a list of standard data types

You can select a data type from a list of standard data types. This is the same
list that is available in the Conceptual Data Model. PowerDesigner
automatically maps the standard data type to an OOM data type.

The length and precision are properties that do not apply to all data types.
Furthermore, depending on data type, length may indicate a maximum or a
fixed number of characters.

The classes below indicates the data types for which you can specify:

♦ Fixed length

♦ Maximum length

♦ Decimal precision

Defining domains

126

Conceptual data type What it stores Length? Precision?

Integer 32-bit integer — —

Short Integer 16-bit integer — —

Long Integer 32-bit integer — —

Byte 256 values — —

Number Numbers with a fixed
decimal point

Fixed á

Decimal Numbers with a fixed
decimal point

Fixed á

Float 32-bit floating decimal
numbers

Fixed —

Short Float Less than 32-bit floating
decimal number

— —

Long Float 64-bit floating decimal
numbers

— —

Money Numbers with a fixed
decimal point

Fixed á

Serial Automatically
incremented numbers

Fixed —

Boolean Two opposing values
(true/false; yes/no; 1/0)

— —

Conceptual data type What it stores Length?

Characters Character strings Fixed

Variable Characters Character strings Maximum

Long Characters Character strings Maximum

Long Var Characters Character strings Maximum

Text Character strings Maximum

Multibyte Multibyte character strings Fixed

Variable Multibyte Multibyte character strings Maximum

Numeric data types

Character data
types

Chapter 2 Building an Object-Oriented Model

127

Conceptual data type What it stores

Date Day, month, year

Time Hour, minute, and second

Date & Time Date and time

Timestamp System date and time

Conceptual data type What it stores Length?

Binary Binary strings Maximum

Long Binary Binary strings Maximum

Image Images Maximum

Bitmap Images in bitmap format (BMP) Maximum

OLE OLE links Maximum

Other User-defined data type —

Undefined Not yet defined data type —

� To select a data type from a list of standard data types:

1 Select Model➤ Domains.

The List of Domains appears.

2 Click the domain to define.

An arrow appears at the beginning of the line.

3 Click the Properties tool.
or
Double-click the arrow at the beginning of the line.

The domain property sheet appears.

4 Click the Question Mark button next to the Data Type dropdown listbox.

Selecting from the Data Type dropdown listbox
You can also select a data type directly from the Data Type dropdown
listbox.

Time data types

Other data types

Defining domains

128

A list of standard data types appears.

5 Click the radio button corresponding to the data type you want to apply.

The code for the data type appears in the Code box.

Undefined data type
If you do not want to select a data type immediately, you can choose
the Undefined data type.

6 Type the maximum number of characters for the data type in the Length
box.

7 If the data type can include values that take a decimal point, type the
number of places after the decimal point in the Precision box.

8 Click OK.

The change of data type appears in the Data Type box.

Chapter 2 Building an Object-Oriented Model

129

Modifying domain properties

You can modify domain properties from its property sheet.

When you modify a domain, you can choose to automatically update the
following properties for attributes using the domain:

♦ Data type

♦ Check parameters

♦ Business rules

� To modify domain properties:

1 Select Model➤ Domains.

The List of Domains appears.

2 Click a domain from the list.

An arrow appears at the start of the line.

3 Click the Properties tool.
or
Double-click the arrow at the start of the line.

Accessing a property sheet from the Browser
You can also access a domain property sheet by double-clicking the
appropriate domain node in the Browser.

The Domain property sheet appears.

4 Type changes to domain properties.
or
Click on a page tab.
Type or select domain properties as required.

5 Click OK.

If the domain is used by one or more attributes, an update confirmation
box appears asking if you want to modify domain properties for the
attributes using the domain.

If the domain is not used by any attributes, then you do not receive the
update confirmation box.

6 Select the properties that you want to be updated for all attributes using
the domain.

7 Click Yes.

Defining check parameters

130

Defining check parameters
Check parameters are set of conditions which data must satisfy to remain
valid. They are used principally in for use in a CDM or a PDM.

There are two types of check parameters:

Parameter type Description
Can be
attached to

Standard parameters Common data constraints which define a
data range. For example minimum and
maximum values for an attribute

Attributes
Domains

Additional check
parameters

SQL expression defining a data
constraint using the %MINMAX%,
%LISTVAL%, and %RULES% variables
that are instantiated with standard
parameter values

Attributes
Domains

Validation rule Business rule that is defined as a server
expression, and is attached to one of the
following listed objects

Classes
Attributes
Domains

Setting standard check parameters for objects

Standard parameters indicate common data constraints. The following table
lists standard parameters:

Parameter Description

Minimum Lowest acceptable numeric value

Maximum Highest acceptable numeric value

Default Value assigned in absence of an expressly entered value

Format Data format (for example, 9999.99)

Unit Standard measure

Uppercase Forces all alphabetical characters to uppercase

Lowercase Forces all alphabetical characters to lowercase

Cannot Modify Protects from changes, results in a nonmodifiable attribute in
the class

List of Values Authorized values

Chapter 2 Building an Object-Oriented Model

131

� To set standard parameters:

1 Click the Standard Checks tab in the property sheet of a domain or an
attribute.

The Standard Checks page appears.

2 Type your choice of Standard Parameters.

3 Click OK.

Defining additional check parameters for objects

You can write an SQL statement using the following standard variables
defined as standard check parameters and validation rules:

Variable Description

%MINMAX%, Minimum and maximum values defined in Values groupbox on
Standard Checks page

%LISTVAL% Customized values defined in List Values groupbox on
Standard Checks page

%RULES% Validation rule expression defined on Expression page of the
Rules property sheet

Defining check parameters

132

You define additional check parameters for data constraints where standard
check parameters are not sufficient.

� To define additional check parameters:

1 Click the Additional Checks tab in the property sheet of an attribute or
domain.

The Additional Checks page appears.

2 Type SQL expression using the variables %MINMAX%, %LISTVAL%,
and %RULES%.

3 Click OK.

Using a validation rule in check parameters

A validation rule is a rule that validates data based on a corresponding
business rule. A validation rule can be generated as a check parameter when
the following conditions apply:

♦ Validation rule is attached to a class, attribute, or domain

♦ Validation rule is defined as a server expression

Chapter 2 Building an Object-Oriented Model

133

At generation, validation rule variables are instantiated with the following
values:

Variable Value

%ATTRIBUTE% Code of the attribute to which the business rule applies

%DOMAIN% Code of the domain to which the business rule applies

%CLASS% Code of the class to which the business rule applies

%MINMAX% Minimum and maximum values for the attribute or domain

%LISTVAL% List values for the entity attribute or domain

%RULES% Server validation rules for the entity attribute or domain

� For more information on defining business rules, see the chapter Using
Business Rules.

� To use a validation rule in check parameters:

1 Click the Rules tab in the property sheet of a class, attribute, or domain.

The Rules page appears.

2 Click the Add Rules tool.

A list appears displaying the available business rules in the model.

3 Select a business rule in the list.

4 Click OK in each of the dialog boxes.

Validation rule expressions
You must click the Rules button to modify the expression attached to
a validation rule. You can also modify validation rule expressions
from the list of business rules, by clicking the Define button.

Defining check parameters

134

135

C H A P T E R 3

Managing Object-Oriented Models

This chapter describes how to compare and merge Object-Oriented Models
as well as how to check the validity of a Object-Oriented Model (OOM).

Topic Page

Checking an OOM 136

Merging two OOM 144

Opening a Rose model in an OOM 145

About this chapter

Contents

Checking an OOM

136

Checking an OOM
The procedure that generates .java Java source files or PowerBuilder objects
starts by checking the validity of the OOM. If an error is found, the files are
not generated.

Object parameters verified by Check model

The Check Model verifies the validity of the following objects in an OOM:

Object Parameter

Classes Class name and code uniqueness and length
Class must have either attribute or operation
Class is not declared as private
Class constructor has no return type specified
Class constructor cannot have modifiers
Class constructor cannot be not declared as static, abstract or

final

Interfaces Interface name and code uniqueness and length
Interface must have either attribute or operation
Interface cannot have constructors

Attribute Attribute name and code uniqueness and length
Data type has a not-null and not-void data type
Attribute must have value assigned
Attribute must be initialized

Operation Operation name and code uniqueness and length
Operation must have a not-null return type
Operation parameter must have a not-null and not-void data

type
Abstract operation cannot have a body
Abstract operation declaration must appear only in an abstract

class

Association Role name and code uniqueness and length

Realization Redundant realizations. Only one realization is needed to
realize an interface

Generalization Redundant generalization. Only one generalization is needed to
generalize a classifier

Generalization cannot have multiple inheritance (Java only)
Generalization cannot have circular inheritance

BeanInfo class BeanInfo class must have a corresponding JavaBean class

Views View name and code uniqueness and length
Incomplete query

Chapter 3 Managing Object-Oriented Models

137

OOM check options

When you check an OOM, if a parameter is found to be invalid, it can be
displayed with one of two types of messages:

Message Description

Error Major problem that impedes Java or PowerBuilder generation

Warning Minor problem or recommendation

These messages represent two different levels of problem severity. You can
modify the level of problem severity for each object parameter that is verified
by the Check model. This severity level can depend on the degree of
normalization that you want to achieve in a your model.

You can also have certain problems automatically corrected.

Indicating error severity

You can use the following tools from the Check Model Parameters dialog
box to indicate either an error or warning level of problem severity, and also
if you want PowerDesigner to automatically correct an error:

Tool Indicates Description

Error Major problem that impedes generation

Warning Minor problem or recommendation

Automatic
correction

Indicates that PowerDesigner will correct the problem
automatically

You must also choose one of the following correction options:

Option Description

Manual correction Displays error and warning messages

Automatic correction Displays error and warning messages
Corrects certain errors automatically

Checking an OOM

138

Object selection in the Check Model

You select objects to check from the Selection page.

You can list all objects in the current model, or package, by selecting the
Include Sub-packages tool.

You have the following selection options:

Parent object
Include Sub-
packages Displays

Model Selected All objects in model including all objects
contained in packages and sub-packages

Model Not selected All objects in model except objects
contained in packages and sub-packages

Package Selected All objects contained in package including
all objects contained in sub-packages

Package Not selected All objects in package except objects
contained in sub-packages

Objects selected in the diagram
Graphically selected objects in your diagram can be automatically selected
for verification by the Check Model by clicking the Use Graphical
Selection tool in the Selection page tool bar.

Checking a OOM

You can check the validity of an OOM at any time.

� To check a OOM:

1 Select Tools➤ Check Model.
or
Right-click the diagram background and select Check Model from the
context menu.

The Check Model Parameters dialog box opens to the Options page.

2 Expand an object parameter node.

Chapter 3 Managing Object-Oriented Models

139

The object parameters which are verified by the Check Model are
displayed with the symbols indicating a degree of problem severity.

3 If you want to change a degree of problem severity, select the object
parameter and then select either the Error or Warning tool.

The symbol changes to the appropriate severity level.

4 If you want PowerDesigner to automatically correct a problem, select the
object parameter and then select the Automatic Correction tool.

The Automatic Correction symbol appears superimposed on the Error or
Warning symbol for that object parameter.

5 Click the Selection tab.

Checking an OOM

140

The Selection page appears.

6 Select a model from the dropdown list at the top of the dialog box.

7 Click an object tab.

The corresponding object page displays all the objects in the current
OOM.

8 Select checkboxes for objects that you want to be checked.

9 Clear checkboxes for objects that you do not want to be checked.

Selecting all or clearing all checkboxes
You can select all object checkboxes by clicking the Select All tool.
You can clear all object checkboxes by clicking the Deselect All tool.

10 Click OK.

Chapter 3 Managing Object-Oriented Models

141

The Check Model Result List displays errors and warnings based on the
check options you have defined.

Dockable result window
When you right click an object parameter, a menu appears listing
correction options. Among these, you can also select options to clear,
dock or hide the result window.

Making corrections based on OOM check results

You can use the Check Model to locate and correct problems in the OOM.

You can choose one of the following correction options from the Check
toolbar:

Symbol Option Description

Manual correction Displays property sheet of problem object

Check detail Displays description of the error and suggestion
for correction

Recheck Checks selected object parameter, normally
after a correction has been done

Automatic
correction

Automatically corrects:

♦ Non-unique names

♦ Code too long for generation (Java or
PowerBuilder)

♦ Divergence in domain values, check
parameters, and validation rules

Checking an OOM

142

The Check tool bar also contains navigation tools that you can use to move to
the first, previous, next, or last errors that are listed. You can also navigate in
the list of errors by right-clicking an object parameter and selecting Go To
First error, Previous error, Next error, or Last error from the context menu.

Right click menu
When you right click an object parameter a menu appears listing the
correction options Manual Correction, Check Detail, Recheck, and
Automatic Correction. You can also select options to clear, dock and hide
the result window.

Making automatic corrections to the OOM

� To make automatic corrections to an OOM:

1 From the Check Result dialog box, select an object parameter.

2 Right-click the object parameter and select Auto-Correction from the
contextual menu.

3 Right-click the object parameter and select Re-check from the contextual
menu.

Verify that the problem has been corrected.

Making manual corrections to an OOM

Some errors cannot be corrected automatically and have to be corrected
manually.

� To make manual corrections to an OOM:

1 From the Check Result dialog box, select an object parameter.

2 Right-click the object parameter and select Check from the contextual
menu.

The object property sheet appears.

3 Select the appropriate tab and make the necessary correction.

4 Close the property sheet.

5 Re-select the object parameter.

Navigating in the
error list

Chapter 3 Managing Object-Oriented Models

143

6 Right-click the object parameter and select Re-check from the contextual
menu.

Verify that the problem has been corrected.

Merging two OOM

144

Merging two OOM
You can merge two OOM. The merge makes it possible to form a single
model that combines design efforts performed independently by several team
members.

When the merge process finds two objects that have the same code, you can
indicate whether or not the definition of the object in the source model should
replace the definition in the target model.

� For more information on merging models, see the PowerDesigner
General Features Guide.

Chapter 3 Managing Object-Oriented Models

145

Opening a Rose model in an OOM
You can import a .mdl models built with Rational Rose in PowerDesigner. A
new OOM is created for the Rose model, and the objects of the Rose model
are translated into OOM objects.

This functionality provides you with greater scope and flexibility. You can
create an OOM from a Rose model, from which you can generate Java files
or objects for PowerBuilder to create applications. You can also use the
OOM created from a Rose model to add to an existing OOM, or to generate a
CDM or PDM for database analysis purposes.

� To open a Rose model in PowerDesigner:

1 Select File➤ Open

An open file dialog box appears.

2 Select or browse to the directory that contains the Rose file.

3 Select Rose Model (*.mdl) file from the Files of type dropdown listbox.

The available Rose files are listed.

4 Select a file.

5 Click Open.

A message box lists all imported objects.

6 Click OK.

Opening a Rose model in an OOM

146

Objects imported

The following Rose objects are imported directly into the new OOM:

Package
Diagram
Class
Interface
Attribute
Operation
Generalization
Association
Dependency
Realization
Note
Note Link
Text

The import process translates some properties of imported objects into OOM
properties as follows:

Property in an Rose model Imported property in a OOM

Documentation Comment

Export Control - Implementation Visibility - Package

Property in an Rose model Imported property in a OOM

Cardinality - n Cardinality - *

Cardinality - 1..n Cardinality - 1..*

Property in an Rose model Imported property in a OOM

Virtual inheritance Virtual

Property in an Rose model Imported property in a OOM

Cardinality Multiplicity

Aggregate Container

Aggregate by reference, by
value, unspecified

Aggregation or Composition

All objects

Class

Generalization

Association

Chapter 3 Managing Object-Oriented Models

147

Objects not imported

When you open a Rose model, the following properties are not imported into
the new OOM:

Global

Rose Property Rose Sub-property

Type Parameterized Class
Instanciated Class
Parameterized Class Utility
Instanciated Class Utility
MetaClass

Formal arguments —

Nested Class —

Concurrency —

Files —

Rose Property Rose Sub-property

Type Class
Class Utility
Parameterized Class
Instanciated Class
Parameterized Class Utility
Instanciated Class Utility
MetaClass

Formal arguments —

Cardinality —

Persistence —

Abstract —

Nested Class —

Concurrency —

Rose Property Rose Sub-property

Containment By Value
By Reference
Unspecified

Package

Class

Interface

Attribute

Opening a Rose model in an OOM

148

Default Values of Arguments
Protocol
Qualification (language-specific)
Exceptions
Size (amount of storage)
Time (to complete operation)
Concurrency (sequential, guarded, synchronous)
Preconditions
Postconditions

Friendship required (yes/No)

Keys/qualifiers
Constraints
Stereotype
Derived
Static
Friend

Export control
Friendship required
Cardinality from
Cardinality to

Operation

Generalization

Association

Dependency

149

C H A P T E R 4

Reverse Engineering

This chapter describes Java, PowerBuilder, and XML reverse engineering
functions for an Object-Oriented Model (OOM). It also shows you how to
create a new OOM by reverse engineering from a database.

Topic Page

What is reverse engineering? 150

Reverse engineering Java 151

Reverse engineering PowerBuilder 166

Reverse engineering XML 174

Reverse engineering into a new OOM 177

About this chapter

Contents

What is reverse engineering?

150

What is reverse engineering?
Reverse engineering is the process of examining and recovering data or
source code from a file that is then used to build or update an OOM. You
reverse engineer objects to an OOM via a diagram. You can reverse engineer
objects to a new model, or to an existing model. When you reverse engineer
an object that already exists in a model, you can choose in an object
comparison box either to replace the existing object, or to keep the existing
object in the model.

Parsing
PowerDesigner uses parser software for reverse engineering XML, that
was developed by the Apache Software Foundation
(http://www.apache.org/).

You can reverse the following type of files into an OOM:

♦ Java

♦ PowerBuilder

♦ XML

You can reverse engineer an existing database into a new OOM. The data
source can be either from a script file or an ODBC data source.

This functionality is accessible from the File➤ Reverse Engineering menu.

Reverse
engineering into a
new OOM

Chapter 4 Reverse Engineering

151

Reverse engineering Java
You can reverse engineer files that contain Java classes into an OOM. For
each existing class in a Java file, a corresponding class is created in the
model, with the same name and containing the same information. When you
reverse engineer a Java class that already exists in a model, you can choose in
the Merge Model window either to replace the existing class, or to keep the
existing class definition in the model.

Reverse engineered Java classes always keep their original names.

When you reverse engineer classes from Java files to a diagram, you can
choose from one of the following four sources:

Source Description Extension

Java .java files Each file contains one or several class
definitions

.java

Java .class files Files that contain one class definition that
has the same name as the file

.class

Directory Folder from which you can reverse all the
Java files, including all those contained in
it’s sub-directories

—

Archived Java files Compressed .jar or .zip files. Only the Java
classes contained in these files are
imported into your model. All other
information is discarded

.zip and .jar

An inner class is a class definition that is defined within another (outer) class
definition. Inner classes are commonly used in Java. They help you to
improve the overall visibility of your model by allowing you to group
together classes that logically belong together.

When you reverse a Java class that contains one or more inner classes, one
class is created for the outer class, and one class is created for each of the
inner classes.

A dependency link is created between each inner class and the outer class to
which it belongs. The name of each inner class is prefixed by the name of the
outer class.

Inner Classes

Reverse engineering Java

152

When you reverse engineer Java files, some comments may change form or
position within the code.

Comment in original Java file After reverse

Before the import declarations Is lost from file

Beginning with /* Begins with //

At the end of the file below all the code Is lost from file

Within a class but not within an operation Is attached to the attribute or
operation that immediately follows it

Reverse engineering Java options

You define Java reverse engineering options from the Reverse Java dialog
box.

You can define the following Java reverse engineering options:

Option Result of selection

Ignore operation body Reverses classes without including the body of the code

Ignore Comments Reverses classes without including code comments

Create Symbols Creates a symbol for each object in the diagram.
Otherwise, reversed objects are visible in the browser

Mark Classifiers not to
be generated

Reversed classifiers (classes and interfaces) cannot then
be generated from the model. To be able to generate the
classifier, you must select the Generate checkbox in its
property sheet

Create Associations Creates associations between classes and/or interfaces

Libraries Opens a JDK model in the workspace. The Setup
program installs these models with PowerDesigner.
They contain the class libraries of each version of JDK
and are useful to you in that you can load them quickly
into PowerDesigner and thus save time reversing them

� To define Java reverse engineering options:

1 Select Language➤ Reverse Engineer Java.

The Reverse Java dialog box opens.

2 Click the Options tab.

Java code
comments

Chapter 4 Reverse Engineering

153

The Options page appears.

3 Select or clear options.

4 Click Apply.

5 Click Cancel.

Loading a JDK library model in the workspace

When you reverse engineer Java files, you can, at the same time, load one of
the JDK models that contains the class libraries of a particular version of
JDK. You can select to reverse a JDK library model from the Options page
of the Reverse Java dialog box. The Setup program installs these models in
the PowerDesigner LIBRARY folder.

You can open a JDK library model in the workspace from the PowerDesigner
LIBRARY directory. You can then reference a class from the reversed JDK
library model by creating shortcuts from another OOM.

� To load a JDK library model:

1 Select File➤ Open.

An open file dialog box appears.

2 Select or browse to the PowerDesigner Library directory.

Reverse engineering Java

154

The available library files are listed. Each JDK file corresponds to a
particular version of JDK.

3 Select the file JDK-1_1_8.OOM.

This file contains all the library class files of version 1_1_8 of JDK.

4 Click Open.

The OOM opens in the workspace.

Reverse engineering Java source files without code body

You can reverse engineer .java class source files without the body of the
code. When you reverse classes in this way, the code contained within the
operations of the class does not appear in the reversed class.

You use this option when you want to reverse objects for visualization or
comparison purposes, or to limit the size of your model when you have a very
large number of classes to reverse.

� To reverse java without code body:

1 Select Language➤ Reverse Engineer Java.

The Reverse Java dialog box appears.

2 Select the .java radio button.

Chapter 4 Reverse Engineering

155

3 Click the Add button.

A standard Open dialog box appears.

4 Select the files that you want to reverse and click Open.

You return to the Reverse Java dialog box. It displays the files you
selected.

5 Click the Options tab.

The Options page appears.

Reverse engineering Java

156

6 Select the Ignore operation body checkbox.

7 Click OK.

The classes reversed without the body of the code. The classes are
automatically added to your model and are visible in the diagram.

Reverse engineering Java source files

Each .java source file contains information on one or several class
definitions. When you reverse engineer a .java file, PowerDesigner creates a
class in the model corresponding to each class definition in the .java file. The
newly created classes have the same name as in the .java file.

� To reverse engineer .java files:

1 Select Language➤ Reverse Engineer Java.

The Reverse Java dialog box appears.

Chapter 4 Reverse Engineering

157

2 Select the .java radio button.

Reversing without the body of the code
You can choose reverse .java source files without the body of the
code of the class by selecting the Ignore operation body checkbox in
the Options page.

3 Click the Add button.

A standard Open dialog box appears.

Reverse engineering Java

158

4 Select the files that you want to reverse and click Open.

Multi-selection
You can select several files simultaneously by using the CTRL or SHIFT

keys.

5 Click OK.

A Progress box appears and the classes are added to your model. The
classes are visible in the diagram and in the Browser.

The reversed classes are listed in the Reverse page of the Output
window, situated in the bottom part of the PowerDesigner main window.

Reverse engineering compiled Java files

A compiled .class file contains the definition of one unique class. A compiled
.class file results from compiling a .java file, using an independent Java
compiler. After compilation, each class definition in the .java file becomes an
individual compiled .class file.

When you reverse engineer a .class file, PowerDesigner creates a class in the
model that corresponds to the class definition in the .class file. The newly
created class has the same name as the definition in the .class file.

� To reverse engineer compiled Java files to a diagram:

1 Select Language➤ Reverse Engineer Java.

The Reverse Java dialog box appears.

Chapter 4 Reverse Engineering

159

2 Select the .class radio button.

3 Click the Add button.

A standard Open dialog box appears.

4 Select the files that you want to reverse and click Open.

Multi-selection
You can select several files simultaneously by using the CTRL or SHIFT

keys.

Reverse engineering Java

160

You return to the Reverse Java dialog box. It displays the files you
selected.

5 Click OK.

A Progress box appears and the classes are added to your model. The
classes are visible in the diagram and in the Browser.

The reversed classes are listed in the Reverse page of the Output
window, situated in the bottom part of the PowerDesigner main window.

Chapter 4 Reverse Engineering

161

Reverse engineering Java files from a source directory

Reverse engineering .java source files from a source directory requires that
you follow the same procedure as when you reverse engineer independent
.java files, the only difference being that you select a directory in which
several .java files are located and not individual files. This gives you the
advantage of reversing groups of files that belong to the same model or
package.

Often Java library files are interdependent as they belong to the same model
and are therefore located in the same directory. In this case, if you do not
reverse engineer all the library files located in the directory, your model may
be incomplete.

When you reverse engineer a directory, all the sub-directories and the Java
files contained in them are reversed. In this case, each sub-directory becomes
a package within the model.

� To reverse engineer Java files from a source directory:

1 Select Language➤ Reverse Engineer Java.

The Reverse Java dialog box appears.

2 Select the Directory radio button.

Reverse engineering Java

162

Reversing without the body of the code
You can choose reverse .java source files without the body of the
code of the class by deselecting the Ignore operation body checkbox.

3 Click the Add button.

The Browse for Folder dialog box appears.

4 Select the directory that contains the Java files you want to reverse and
click OK.

You return to the Reverse Java dialog box. It displays the files you
selected.

Chapter 4 Reverse Engineering

163

5 Click OK.

A Progress box appears and the classes are added to your model. The
classes are visible in the diagram and in the Browser.

The reversed classes are listed in the Reverse page of the Output
window, situated in the bottom part of the PowerDesigner main window.

Reverse engineering archived .jar or .zip files

Each .jar or .zip file contains definitions of one or several classes. These files
can often contain large numbers of class definitions.

A .jar file is a compressed file type that contains one or several Java class
definitions. When you reverse engineer a .jar file, PowerDesigner creates a
class for each class definition in the .jar file.

A .zip file can contain one or several Java class files, as well as other files.
When you reverse engineer a .zip file, only the Java class files are reversed.
Information stored in other files is not reversed and is totally discarded.

� To reverse engineer .jar or .zip files to a diagram:

1 Select Language➤ Reverse Engineer Java.

The Reverse Java dialog box appears.

Reverse engineering Java

164

2 Select the Archive radio button.

3 Click the Add button.

A standard Open dialog box appears.

4 Select the files that you want to reverse and click Open.

Multi-selection
You can select several files simultaneously by using the CTRL or SHIFT

keys.

Chapter 4 Reverse Engineering

165

The Reverse Java dialog box displays the files you selected.

5 Click OK.

A Progress box appears and the classes are added to your model. The
classes are visible in the diagram and in the Browser.

The reversed classes are listed in the Reverse page of the Output
window, situated in the bottom part of the PowerDesigner main window.

Reverse engineering PowerBuilder

166

Reverse engineering PowerBuilder
You can reverse engineer PowerBuilder NVO (non-visual objects) into an
OOM from either of the following sources:

♦ PowerBuilder applications

♦ SRU files

For each reversed PowerBuilder object, a class is created in the model, with
the same name and containing the same information. When you reverse
engineer an object that has the same name as a class that already exists in a
model, you can choose in the Merge Model window either to replace the
existing class, or to keep the existing class definition in the model.

You can reverse only the following PowerBuilder User Objects:

♦ Custom Class

♦ Standard Class

♦ Custom Visual

♦ External Visual

♦ Standard Visual

Reverse engineering PowerBuilder options

You define PowerBuilder reverse engineering options from the Reverse
PowerBuilder dialog box.

Chapter 4 Reverse Engineering

167

You can define the following PowerBuilder reverse engineering options:

Option Result of selection

Ignore operation body Reverses PowerBuilder objects without including the
body of the code

Ignore Comments Reverses PowerBuilder objects without including code
comments

Create Symbols Creates a symbol for each object in the diagram.
Otherwise, reversed objects are visible in the browser

Mark Classifiers not to
be generated

Reversed classifiers (classes and interfaces) cannot then
be generated from the model. To be able to generate the
classifier, you must select the Generate checkbox in its
property sheet

Create Associations Creates associations between classes

Libraries Loads the corresponding PowerBuilder model in the
workspace. The Setup program installs these models
with PowerDesigner. They contain the class libraries of
each version of PowerBuilder and are useful to you in
that you can load them quickly into PowerDesigner and
thus save time reversing them

� To define PowerBuilder reverse engineering options:

1 Select Language➤ Reverse Engineer PowerBuilder.

The Reverse PowerBuilder dialog box opens.

2 Click the Options tab.

Reverse engineering PowerBuilder

168

The Options page appears.

3 Select PowerBuilder reverse options.

4 Click Apply.

5 Click Cancel.

Loading a PowerBuilder library model in the workspace

When you reverse engineer PowerBuilder files, you can, at the same time,
load one of the PowerBuilder models that contains the class libraries of a
particular version of PowerBuilder. You can select to reverse a PowerBuilder
library model from the options page of the Reverse PowerBuilder dialog box.
The Setup program installs these models in the PowerDesigner library folder.

You can open a PowerBuilder library model in the workspace from the
PowerDesigner Library directory.

� To load a PowerBuilder library model:

1 Select File➤ Open.

An open file dialog box appears.

2 Select or browse to the PowerDesigner Library directory.

Chapter 4 Reverse Engineering

169

The available library files are listed. Each PB file corresponds to a
particular version of PowerBuilder.

3 Select the file PB7.OOM.

This file contains all the library class files of PowerBuilder version 7.

4 Click Open.

The OOM opens in the workspace.

Reverse engineering objects from a PowerBuilder application

When you reverse engineer objects from a PowerBuilder application, you can
select only one PowerBuilder application from the PB application dropdown
listbox. You can then add objects that belong to this application to the list of
objects to reverse.

If PowerBuilder is not installed on your machine, you cannot generate objects
for a PowerBuilder application, and you can reverse only SRU files.

Reverse engineered PowerBuilder objects always keep their original names.

� To reverse PowerBuilder objects from a PowerBuilder application:

1 Select Language➤ Reverse Engineer PowerBuilder.

The Reverse PowerBuilder dialog box appears.

Reverse engineering PowerBuilder

170

2 Select the PBL radio button.

3 Select a PowerBuilder application from the PB Application dropdown
listbox.

4 Click the Add button.

A standard Open dialog box appears.

5 Select the file that you want to reverse and click Open.

Multi-selection
You can select several files simultaneously by using the CTRL or SHIFT

keys.

Chapter 4 Reverse Engineering

171

You return to the Reverse PowerBuilder dialog box. It displays the files
you selected.

6 Click OK.

A Progress box appears and the classes are added to your model. The
classes are visible in the diagram and in the Browser.

The reversed classes are listed in the Reverse page of the Output
window, situated in the bottom part of the PowerDesigner main window.

Reverse engineering objects from SRU files

SRU files are text files containing the definition of PowerBuilder User
Objects.

You do not have to have PowerBuilder installed on your machine to reverse
engineer objects contained in SRU files.

Reverse engineered PowerBuilder objects always keep their original names.

� To reverse engineer PowerBuilder objects from SRU files:

1 Select Language➤ Reverse Engineer PowerBuilder.

The Reverse PowerBuilder dialog box appears.

Reverse engineering PowerBuilder

172

2 Select the SRU radio button.

3 Click the Add button.

A standard Open dialog box appears.

4 Select the SRU files that you want to reverse and click Open.

Multi-selection
You can select several files simultaneously by using the CTRL or SHIFT

keys.

Chapter 4 Reverse Engineering

173

You return to the Reverse PowerBuilder dialog box. It displays the files
you selected.

5 Click OK.

A Progress box appears and the classes are added to your model. The
classes are visible in the diagram and in the Browser.

The reversed classes are listed in the Reverse page of the Output
window, situated in the bottom part of the PowerDesigner main window.

Reverse engineering XML

174

Reverse engineering XML
You can reverse engineer one of the following types of XML file to an OOM:

♦ XML - DTD Provides an overall structure for an XML file in DTD
format.

♦ XML - Schema Provides an overall structure for an XML file in
Schema format.

♦ XML - Data All other XML documents describing data or schemas.

When you reverse a DTD file into an OOM, you get more readable view of
the DTD. This feature can be very helpful when you want to observe and
understand a new DTD that you have not generated.

When you reverse engineer a DTD file:

♦ Elements of type #PCDATA are reversed as attributes.

♦ An element that has both a parent and a child element is linked to its
parent element by an aggregation link.

♦ If an empty element has no child object but has attributes, it is reversed
as a class and its attributes become attributes of the class.

♦ Attributes of type ID and IDREF(S) with ID and IDREF(S) datatypes
can be changed into associations.

When you reverse engineer an XML - Schema file:

♦ <type> elements are reversed as classes.

♦ An <element> not declared as <type> is reversed as an attribute.

The XML Mapping in the XOL file defines which element becomes a class,
an attribute or an association.

Reverse engineering XML options

You define XML reverse engineering options from the Reverse XML dialog
box.

You can define the following XML reverse engineering options:

Option Result of selection

Create symbols Creates a symbol for each reversed XML object in the
diagram. Otherwise, reversed objects are visible only in
the browser

XML - DTD

XML - Schema

XML - Data

Chapter 4 Reverse Engineering

175

� To define XML reverse engineering options:

1 Select Language➤ Reverse Engineer XML.

The Reverse XML dialog box opens.

2 Click the Options tab.

The Options page appears.

3 Select XML reverse options.

4 Click Apply.

5 Click Cancel.

Reverse engineering XML files

XML files can be reversed into an OOM.

Reverse engineering XML

176

� To reverse engineer an XML file:

1 Select Language➤ Reverse Engineer XML.

The Reverse XML dialog box opens to the Selection page.

2 Click the Add button.

A standard Open dialog box appears.

3 Select the files that you want to reverse and click Open.

Multi-selection
You can select several files simultaneously by using the CTRL or SHIFT

keys.

You return to the Reverse XML dialog box. It displays the files you
selected.

4 Click OK.

A Progress box appears and the objects are added to your model. The
objects are visible in the diagram and in the Browser.

The reversed classes are listed in the Reverse page of the Output
window, situated in the bottom part of the PowerDesigner main window.

Chapter 4 Reverse Engineering

177

Reverse engineering into a new OOM
You can reverse engineer object language files (Java, PowerBuilder, XML)
into a new OOM.

� To reverse engineer object language files into a new OOM:

1 Select File➤ Reverse Engineering➤ Object Language.

The Choose Object Language dialog box appears.

2 Click the Link radio button.

3 Select an object language in the dropdown list box.

4 Click OK.

Depending on the chosen object language the corresponding dialog box
appears to let you select a file and reverse options.

5 Click OK to start reverse engineering.

A message in the Output window indicates that the specified file is fully
reverse engineered.

Reverse engineering into a new OOM

178

This product includes XML4C 3.0.1 software developed by the
Apache Software Foundation (http://www.apache.org/)
Copyright (c) 1999 The Apache Software Foundation. All rights reserved.
THE XML4C 3.0.1 SOFTWARE ("SOFTWARE") IS PROVIDED ‘‘AS
IS’’ AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

179

C H A P T E R 5

Generating Objects from an OOM

This chapter describes how to generate objects from an OOM.

Topic Page

Generating objects 180

Generating Java source files 182

Generating objects for PowerBuilder 189

Generating for XML 195

Customizing scripts 199

About this chapter

Contents

Generating objects

180

Generating objects
You can generate the following types of objects from an OOM:

Object type What is generated

Java source files .java files from the classes and interfaces of the model
that you can then compile using a Java compiler

PowerBuilder objects PowerBuilder NVO (non-visual objects) that you can use
directly in PowerBuilder

Java BeanInfo classes Java BeanInfo classes that you generate from the classes
in a model

XML objects XML definition files and enhanced definition files such
as XML schema

Selecting objects to include in the generation

You select objects for generation from the Selection page.

You can display in the list, objects in the current model, or objects in
individual packages contained in the model.

If you select the Include Sub-Packages tool, you can display in the list either
all objects in the current model, or all objects in a package.

Listing objects
contained in a
model or package

Chapter 5 Generating Objects from an OOM

181

You have the following selection options:

Parent object
Include Sub-
Packages Displays

Model Selected All objects in model including all objects
contained in packages and sub-packages

Model Not selected All objects in model except objects contained
in packages and sub-packages

Package Selected All objects contained in package including
all objects contained in sub-packages

Package Not selected All objects in package except objects
contained in sub-packages

Graphically selected objects
Graphically selected objects in your model can be automatically selected
for generation by clicking the Use Graphical Selection tool in the
Selection page tool bar.

Then you can select the objects that you want to generate using the following
select tools:

Tool Action When selected

Include Sub-Packages Displays objects contained in sub-packages

Select All Selects all objects in the model

Unselect All Deselects all objects in the model

Use graphical
selection

Selects graphically selected objects in the
model diagram window

Moves selection to top Moves the selection to the top of the object list

Moves selection to
bottom

Moves the selection to the bottom of the object
list

Selection tips
If you want to use a selection tool for all object type pages, press CTRL +
the desired selection tool.

Selecting objects

Generating Java source files

182

Generating Java source files
You generate Java source files from the classes and interfaces of a model. A
separate file, with the file extension .java, is generated for each class or
interface that you select from the model. You can only generate Java files
from one model at a time.

You can compile the .java class files that you generate from an OOM in any
Java compiler tool. You can also run Java in a database server such as Sybase
Adaptive Server Anywhere. Using Sybase Adaptive Server Anywhere, you
can call Java from SQL by calling Java functions (methods) from SQL
statements. Java methods provide a more powerful language than SQL stored
procedures for adding logic to the database.

You can use Java classes as data types. Every Java class installed in a
database becomes available as a data type that can be used as the data type of
a column in a table.

You can save Java objects in tables. An instance of a Java class (a Java
object) can be saved as a value in a table. Java objects can be inserted into a
table, SELECT statements can be executed against the fields and methods of
objects stored in a table, and Java objects can be retrieved from a table.

Defining Java generation options

You can set Java generation options to check a model for errors before
generating, or to sort the order in which the attributes and operations of the
class in a Java class definition file are displayed according to visibility or
type sort criteria.

You can check the model before generation. The generation stops if an error
is found.

You can sort the order in which attributes and operations are arranged in the
code of the classes by the following criteria.

Option Result of selection

Public - Private After generation, public attributes and operations are placed
before private attributes and operations in the class definition

Private - Public After generation, private attributes and operations are placed
before public attributes and operations in the class definition

None Attributes and operations order remains unchanged after
generation

Check model

Visibility sort

Chapter 5 Generating Objects from an OOM

183

You can sort the order that attributes and operations are arranged in the code
of the classes of the model.

Option Result of selection

Attributes - Operations Displays the class attributes before the operations in the
generated class definition

Operations - Attributes Displays the class operations before the attributes in the
generated class definition

You define Java generation options from the Java Generation dialog box.

� To define Java generation options:

1 Select Language➤ Generate Java Code.

The Java Generation dialog box opens.

2 Click the Options tab.

The Options page appears.

3 Select Java generation options.

4 Click Apply.

5 Click Cancel.

Type sort

Generating Java source files

184

Generating Java class definition files

PowerDesigner generates a Java class definition file for each of the classes
you select to generate in the Java Generation dialog box. You can select any
of the classes from the model, including those that are contained within
packages or sub-packages. The generated files contain the definition of each
class and have the file extension .java.

� To generate .java files:

1 Select Language➤ Generate Java Code.

The Java Generation dialog box opens.

2 Type a destination directory for generated Java files in the Directory
box.
or
Click the Browse to Folder button to the right of the Directory box and
browse to select a directory path.

3 Select a model or package from the Folder Selection dropdown listbox.

Chapter 5 Generating Objects from an OOM

185

4 Select the classes that you want to generate from the list.

Select Tools
All the classes and interfaces of the model, including those that are
grouped into packages, are selected and displayed by default. You
can use the Select tools to the right of the Folder Selection dropdown
listbox to modify the selection. The Include Sub-Packages tool,
enables you to include in your selection all the classes and interfaces
that are situated within packages.

5 Click the Interface tab and select the interfaces you want to generate.

6 Click the Options tab.

Generating Java source files

186

The Options page appears.

7 Select the Select Java generation options.

Navigating between pages
Use CTRL+PAGEDOWN or CTRL+PAGEUP to move to the next or to the
previous tab and display the corresponding page.

8 Click OK.

A Java class definition file is generated with the file extension .java for
each of the classes that you selected.

Creating Java BeanInfo classes

A Java Bean is a reusable software component that can be visually
manipulated in a software development tool.

You can create Java BeanInfo classes from the classes in an OOM.
PowerDesigner generates a new BeanInfo class for each of the classes that
you select in the model. You can select any of the classes from the model,
including those that are contained within packages.

Chapter 5 Generating Objects from an OOM

187

A BeanInfo class can only be created from a class if its type is Java Bean.
You can define the type of a class from its property sheet:

� To create Java BeanInfo classes:

1 Select Language➤ Create BeanInfo Classes.

A selection window appears. It contains a list of all the classes in the
model of type Java Bean.

2 Select the classes for which you want to generate Java BeanInfo classes.

Generating Java source files

188

3 Click OK.

A BeanInfo class is created in the model for each of the classes you
selected.

Chapter 5 Generating Objects from an OOM

189

Generating objects for PowerBuilder
You can generate PowerBuilder NVO (non-visual objects) from the classes
of an OOM to either of the following:

♦ A PowerBuilder application

♦ SRU files

You can create PowerBuilder user objects only from the classes of the
diagram and not from interfaces.

You can generate PowerBuilder NVOs from an OOM that you can use
directly in PowerBuilder. To generate to a PowerBuilder pbl application, you
must have PowerBuilder already installed on your machine.

You can generate NVOs from the classes in an OOM. A separate file with the
extension .sru is created for each of the classes that you select in the OOM.
Each file contains a NVO corresponding to the definition of each class in the
OOM.

Defining PowerBuilder generation options

You can set the following PowerBuilder generation options:

Option Result of selection

Check model Checks the model before generation and stops generation if
an error is found

PBL PowerBuilder library directory and application into which
PowerDesigner generates

SRU Directory in which you generate PowerBuilder non-visual
object .sru files

pbl application

sru files

Generating objects for PowerBuilder

190

When generating objects for a PowerBuilder application, you must make a
selection in both the PB library and PB application fields. If PowerBuilder is
not installed on your machine, you cannot generate objects for a
PowerBuilder application.

Option Result of selection

PB library Directory into which PowerDesigner generates PowerBuilder
library files

PB application PowerBuilder application into which you generate PowerBuilder
non-visual objects. If PowerBuilder is not installed on your
machine, no application appears in the list

� To define PowerBuilder generation options:

1 Select Language➤ Generate PowerBuilder.

The PowerBuilder User Object Generation dialog box opens.

2 Click the Options tab.

The Options page appears.

3 Select the PBL option, type or select a library directory in the PB library
box, and select an application from the PB application Library listbox.
or
Click the SRU checkbox, and type or select a directory in which you
want to generate the sru files.

PBL

Chapter 5 Generating Objects from an OOM

191

4 Click Apply.

5 Click Cancel.

Generating objects for a PowerBuilder application

When you generate PowerBuilder objects, you must specify both the
PowerBuilder library and the application that will use the objects, otherwise
you will not be able to use them in PowerBuilder.

If PowerBuilder is not installed on your machine, you cannot generate objects
for a PowerBuilder application.

� To generate PowerBuilder user objects for a PowerBuilder
application:

1 Select Language➤ Generate PowerBuilder.

The PowerBuilder User Object Generation dialog box opens.

2 Select a model or package from the Folder Selection dropdown listbox.

3 Select the classes that you want to generate from the list.

Generating objects for PowerBuilder

192

Select Tools
All the classes of the model, including those that are grouped into
packages, are selected and displayed by default. You can use the
Select tools to the right of the Folder Selection dropdown listbox to
modify the selection. The Include Sub-Packages tool, enables you to
include in your selection all the classes that are situated within
packages.

4 Click the Options tab.

The Options page appears.

5 Select the PBL option

6 Type a library directory for generated User Objects in the PB library
box.
or
Click the Browse to Folder button to the right of the PB library box and
browse to select a library.

7 Select a PowerBuilder application from the PB application dropdown
listbox.

8 Click OK.

A PowerBuilder User Object is generated in the PowerBuilder
application for each of the classes that you selected.

Chapter 5 Generating Objects from an OOM

193

Generating PowerBuilder objects in sru files

When you generate PowerBuilder objects in sru files, a separate file is
created for each of the classes that you select in the OOM.

You do not have to have PowerBuilder installed on your machine to generate
sru files.

� To generate PowerBuilder user objects in sru files:

1 Select Language➤ Generate PowerBuilder.

The PowerBuilder User Object Generation dialog box opens.

2 Select a model or package from the Folder Selection dropdown listbox.

3 Select the classes that you want to generate from the list.

Select Tools
All the classes of the model, including those that are grouped into
packages, are selected and displayed by default. You can use the
Select tools to the right of the Folder Selection dropdown listbox to
modify the selection. The Include Sub-Packages tool, enables you to
include in your selection all the classes that are situated within
packages.

4 Click the Options tab.

Generating objects for PowerBuilder

194

The Options page appears.

5 Select the SRU option.

6 Select a directory in which you want to generate the .sru files.

7 Click OK.

A PowerBuilder User Object is generated with the file extension .sru for
each of the classes that you selected.

Chapter 5 Generating Objects from an OOM

195

Generating for XML
You can generate an XML DTD file from an OOM.

A DTD file provides an overall structure for an XML file. The DTD file can
be used as a standard for validating data in XML files or for exchanging data
in XML format.

You can generate an XML DTD in one of the following format types:

XML file format Description

XML - DTD Used for standard DTD specification. Each class is
generated as an ELEMENT, with its attributes as sub-
elements. Each Attribute is generated as a PCDATA
ELEMENT

XML - Schema Used for XML Schema specifications: Each class is
generated as a <type>. Each attribute is generated as an
<element>

XML - Data Used for XML Data specification. Mapping is defined by
the XOL specification

Navigable associations are migrated and generated as attributes, although
they do have their own definition in the XOL file. You can specify a separate
definition for a composition association.

Other objects such a interfaces, operations, and inheritance links are not
included in the generated file.

Defining XML generation options

You can check a model before generation or simply generate directly. This
generation option can be selected from the XML Generation dialog box.

� To define XML generation options:

1 Select Language➤ Generate XML.

The XML Generation dialog box opens.

2 Click the Options tab.

Generating for XML

196

The Options page appears.

3 Select XML generation options.

4 Click Apply.

5 Click Cancel.

Generating XML objects

When you generate XML from an OOM, PowerDesigner creates an XML file
containing the definition of each of the classes you select to generate in the
XML Generation dialog box. You can select any of the classes from the
model, including those that are contained within packages or sub-packages.

The generated file has the extension XML, however, its format depends on
the current object language of the model. To change the XML format type,
you must change the object language for the model.

� For more information on changing the current object language, see the
chapter Object Language Properties.

You can create a new XML object language based on an existing one if you
want to generate in another type of XML format that is different to those that
are available with PowerDesigner.

Chapter 5 Generating Objects from an OOM

197

� To generate XML files:

1 Select Language➤ Generate XML.

The XML Generation dialog box opens.

2 Type a destination directory for generated XML file in the Directory
box.
or
Click the Browse to Folder button to the right of the Directory box and
browse to select a directory path.

3 Type a name for generated XML file in the File name box.

4 Select a model or package from the Folder Selection dropdown listbox.

5 Select the classes that you want to include in the generated file from the
list.

Select Tools
All the classes of the model, including those that are grouped into
packages, are selected and displayed by default. You can use the
Select tools to the right of the Folder Selection dropdown listbox to
modify the selection. The Include Sub-Packages tool, enables you to
include in your selection all the classes that are situated within
packages.

Generating for XML

198

6 Click OK.

An XML file is generated with the file extension .xml.

Chapter 5 Generating Objects from an OOM

199

Customizing scripts
You can customize scripts as follows:

♦ Insert scripts at the beginning and end of a script

♦ Insert scripts before and after a class or interface creation command

Customizing a creation script allows you to add descriptive information about
a generated script, or manipulate the script in such a way that is not provided
by PowerDesigner.

You can use the following variables in these scripts:

Variable Description

%PACKAGE% Name of the current package

Customizing scripts

200

201

C H A P T E R 6

Generating a Conceptual Data Model from
an Object-Oriented Model

This chapter describes how to generate a Conceptual Data Model (CDM)
from an Object-Oriented Model (OOM).

Topic Page

Generating OOM objects to a CDM 202

Translating OOM data types for a CDM 203

Generating a CDM from an OOM 204

About this chapter

Contents

Generating OOM objects to a CDM

202

Generating OOM objects to a CDM
When you generate a Conceptual Data Model (CDM) from an Object-
Oriented Model (OOM), PowerDesigner translates OOM objects and data
types to CDM objects and data types.

The current object language of an OOM has no effect on the generation to a
CDM.

Translating OOM objects into CDM objects

CDM generation translates OOM objects into conceptual objects.

OOM object CDM object after generation

Domain Domain

Class Entity (only if the Persistent and Generate checkboxes are
selected in the class property sheet)

Interface Not translated

Attribute Attribute

Identifier Identifier

Operation Not translated

Association Relationship or association

Dependency Not translated

Realization Not translated

Generalization Inheritance

Chapter 6 Generating a Conceptual Data Model from an Object-Oriented Model

203

Translating OOM data types for a CDM
PowerDesigner supports both Java and conceptual data types. When you
generate objects from an OOM to a CDM, Java data types are translated by
PowerDesigner into conceptual data types. PowerDesigner conceptual data
types cannot be modified.

Translating Java data types for a CDM

The following table lists the Java data types to which the object language file
assigns translations:

Java data
type

Code in
CDM What it stores

char A Character

boolean BL Two opposing values (true/false; yes/no; 1/0)

byte BT 256 values

short SI 16-bit integer

integer I 32-bit integer

long LI 32-bit integer

float F 32-bit floating decimal numbers

double N Numbers with a fixed decimal point

String TXT Character strings

Generating a CDM from an OOM

204

Generating a CDM from an OOM
You can generate a CDM from a global OOM or from a package within the
model. Limiting CDM generation to a single package is useful when different
designers own packages of the same OOM. Designers can generate their
packages independently from others. Generating a package results in an
independent CDM.

You generate a CDM from a diagram in the model.

You can generate a CDM in two ways:

Generate Description

New CDM Creates a new (default) CDM containing the objects translated
from the OOM

Updated CDM Creates a default CDM containing the objects translated from
the OOM that is then merged with an existing CDM. You can
choose to update, delete; or add objects in the existing CDM
(target model) based on modifications made in the default CDM
(source model)

� For more information on merging two CDM, see the chapter Comparing
and Merging Models in the PowerDesigner General Features Guide.

Generating and updating a CDM

To generate a CDM, you must indicate to generate one of the following:

♦ Generate new Conceptual Data Model

♦ Update an existing Conceptual Data Model

You must indicate the following parameters when you generate a new CDM:

Parameter Description

Name File name for the resulting CDM

Code Reference code for the resulting CDM

Generate new
Conceptual Data
Model

Chapter 6 Generating a Conceptual Data Model from an Object-Oriented Model

205

You must indicate the following parameters when you update an existing
CDM:

Parameter Description

Select Model Target Conceptual Data Model. This is the existing CDM that the
newly generated CDM (source model) is merged with to create
an updated CDM

Preserve
Modifications

When selected, allows a comparison and merge of the newly
generated CDM (default CDM) with the existing CDM

Clearing the Preserve Modifications checkbox
When Preserve modifications is not selected, PowerDesigner
automatically replaces the selected target model (existing CDM) with the
newly generated CDM. If you want to choose which objects to add or
delete from the target model, you must select Preserve Modifications to
compare and merge the two CDM.

CDM generation options

You can set the following general generation options:

Option Description

Check model Checks the model before generating the CDM, and stops
generation if an error is found

Save generation
dependencies

When selected, PowerDesigner keeps track of the identity of
each generated object. This is useful when merging two CDM
which have been generated from the same OOM. Objects can
be compared and recognized as the same object, even if the
object has been modified in the target CDM

Model Notation Indicates the modeling methodology used in the generated
CDM. You can choose Entity/Relationship, Merise, or Mixed.
If you select Mixed, the two methodologies are available in the
same model

Update existing
Conceptual Data
Model

Generating a CDM from an OOM

206

Check model before generation
If you select the Check Model option, the procedure to generate a CDM
starts by checking the validity of the OOM or package. A CDM results
when no errors are found. You can set check options by selecting
Tools➤ Check Model.

Object selection parameters

You select objects for CDM generation from the Selection page.

You can display in the list, objects in the current model, or objects in
individual packages contained in the model.

If you select the Include Sub-packages tool, you can display in the list either
all objects in the current model, or all objects in a package.

You have the following selection options:

Parent object
Include Sub-
packages Displays

Model Selected All objects in model including all objects
contained in packages and sub-packages

Model Not selected All objects in model except objects contained
in packages and sub-packages

Package Selected All objects contained in package including
all objects contained in sub-packages

Package Not selected All objects in package except objects
contained in sub-packages

Objects selected in the model
Objects selected in your diagram can be automatically selected for
generation by clicking the Use Graphical Selection tool in the Selection
page tool bar.

Listing objects
contained in a
model or package

Chapter 6 Generating a Conceptual Data Model from an Object-Oriented Model

207

Generating a new CDM

When you generate from an OOM to a new CDM, PowerDesigner creates a
new CDM containing all the objects that you selected to generate in the
OOM. The newly created CDM appears in the browser and the
corresponding diagram opens in the main diagram window.

You can only generate a CDM from the active OOM diagram window.

� To generate to a new CDM from an OOM:

1 Select Tools➤ Generate Conceptual Data Model.

The CDM Generation Options dialog box appears.

2 Click the Generate new Conceptual Data Model radio button.

3 Type a new name and code, otherwise, the CDM will have the same
name and code as the OOM.

4 Click the Detail tab.

Generating a CDM from an OOM

208

The Detail page appears.

5 Select or clear CDM generation options.

6 Click the Selection tab.

The Selection page appears.

7 Select the name of an OOM from the Select Location dropdown list.

Chapter 6 Generating a Conceptual Data Model from an Object-Oriented Model

209

Generating a CDM from a package
To generate a CDM from a package, select the package name from
the Select Location dropdown listbox at the top of the page.

To generate CDM from a sub-package, select the Sub-Packages
Included tool next to the Selection Location dropdown listbox, and
then select a sub-package from the dropdown listbox.

8 Select checkboxes corresponding to each entity that you want to
generate.

9 Clear checkboxes corresponding to each entity that you do not want to
generate.

10 Click OK.

The Output window shows the progress of the generation process. The
new CDM appears in the diagram window.

Generating a CDM from an OOM

210

Updating an existing CDM

There are two ways to update an existing CDM depending on whether the
Preserve Modifications options is selected or not selected:

Preserve Modifications Result

Selected You can manually compare and merge existing
CDM (target model) with the newly generated
CDM (source model)

Not selected The existing CDM is automatically replaced by the
newly generated CDM

When Preserve Modifications is selected, the Merge Models window appears
after the new CDM has been successfully generated. You can use the Merge
window to select objects to be updated, deleted, or added to the target model.

The target model must be open in the workspace to be merged with a source
model.

You can only generate a CDM from the active OOM diagram window.

The existing CDM, into which you want to generate objects from the OOM,
must be open in the workspace.

� To update an existing CDM by generating from an OOM:

1 Select Tools➤ Generate Conceptual Data Model.

The CDM Generation Options dialog box appears. If you do not have a
CDM in the current Workspace, the Update existing Conceptual Data
Model option is not available.

2 Select the Update existing Conceptual Data Model radio button.

Chapter 6 Generating a Conceptual Data Model from an Object-Oriented Model

211

3 Select a target model from the Select Model dropdown listbox. This is
the existing model that you want to update.

Preserve modifications
If you want to preserve the existing objects in the CDM, then the
Preserve modifications checkbox must be selected. If you clear this
checkbox, all existing objects in the CDM will be removed from the
model, leaving only the objects generated from the OOM.

4 Click the Detail tab.

Generating a CDM from an OOM

212

The Detail page appears.

5 Select or clear CDM generation options.

6 Click the Selection tab.

The Selection page appears.

7 Select the name of an OOM from the Select Location dropdown list. The
default CDM is generated from this OOM.

Chapter 6 Generating a Conceptual Data Model from an Object-Oriented Model

213

Generating a CDM from a package
To generate a CDM from a package, select the package name from
the Select Location dropdown listbox at the top of the page.

To generate CDM from a sub-package, select the Sub-Packages
Included icon next to the Selection Location dropdown listbox, and
then select a sub-package from the dropdown listbox.

8 Select class checkboxes for each entity that you want to generate.
or
Clear class checkboxes for each entity that you do not want to generate

9 Click OK.

If you selected the Preserve Modifications checkbox, the Merge Models
window appears.

If you cleared the Preserve Modifications checkbox, the updated CDM
appears in the diagram window.

Merging models
The Merge Models dialog box shows the newly generated CDM in
the Source Model pane, and the existing CDM in the Target Model
pane. You can select or clear object check boxes in the Source Model
pane for CDM objects that you want to be included or deleted in the
target model.

� For more information on merging models, see the chapter
Comparing and Merging Models in the PowerDesigner General Features
Guide.

Generating a CDM from an OOM

214

215

C H A P T E R 7

Generating a Physical Data Model from an
Object-Oriented Model

This chapter describes how to generate a Physical Data Model (PDM) from
an Object-Oriented Model (OOM).

Topic Page

Generating OOM objects to a PDM 216

Translating OOM data types for a PDM 217

Generating a PDM from an OOM 218

About this chapter

Contents

Generating OOM objects to a PDM

216

Generating OOM objects to a PDM
When you generate a Physical Data Model (PDM) from an Object-Oriented
Model (OOM), PowerDesigner translates OOM objects and data types to
PDM objects and data types supported by the current DBMS.

The current object language of an OOM has no effect on the generation to a
PDM.

Translating OOM objects into PDM objects

PDM generation translates OOM objects into physical objects.

OOM object PDM object after generation

Domain Domain

Class Table (only if the Persistent and Generate checkboxes are
selected in the class property sheet). The cardinality of a class
becomes the number of records of a table

Interface Not translated

Attribute Column

Identifier Identifier

Operation Stored-Procedure

Association Reference or table

Dependency Not translated

Realization Not translated

Generalization Reference

For a class to become an table the Persistent and Generate checkboxes must
be selected in the property sheet of the class.

The cardinality of a class becomes the number of records of a table.

If the association has a many-to-many cardinality, that is, where both roles of
the association have the * sign selected in their multiplicity dropdown
listboxes, then the association is translated into a table in the generated PDM.
If it has any other cardinality, that is, where one of the roles of the association
does not have an * selected in its multiplicity dropdown listbox, then the
association becomes a reference.

A role name becomes a migrated foreign key after PDM generation.

Generating from
classes

Generating from
associations

Chapter 7 Generating a Physical Data Model from an Object-Oriented Model

217

Translating OOM data types for a PDM
PowerDesigner supports both Java and physical data types. Data types that
you select in the OOM are not always supported by the current DBMS. In
this case, the data type is translated to a data type supported by the DBMS
when you generate the PDM.

Translating Java data types for a PDM

The following table lists the Java data types to which the object language file
assigns translations:

Java data
type

Code in
CDM What it stores

Translation example
for SQL Anywhere

char A Character char

boolean BL Two opposing values
(true/false; yes/no; 1/0)

numeric(1)

byte BT 256 values smallint

short SI 16-bit integer integer

integer I 32-bit integer integer

long LI 32-bit integer integer

float F 32-bit floating decimal
numbers

float

double N Numbers with a fixed
decimal point

numeric

String TXT Character strings long varchar

Generating a PDM from an OOM

218

Generating a PDM from an OOM
You can generate a PDM from a global OOM or from a package within the
model. Limiting PDM generation to a single package is useful when different
designers own packages of the same OOM. Designers can generate their
packages independently from others. Generating a package results in an
independent PDM .

You generate a PDM from a diagram in the model.

You can generate a PDM in two ways:

Generate Description

New PDM Creates a new (default) PDM containing the objects translated
from the OOM

Updated PDM Creates a default PDM containing the objects translated from
the OOM that is then merged with an existing PDM. You can
choose to update, delete; or add objects in the existing PDM
(target model) based on modifications made in the default PDM
(source model)

� For more information on merging two PDM, see the chapter Comparing
and Merging Models in the PowerDesigner General Features Guide.

Generating and updating a PDM

To generate a PDM, you must indicate to generate one of the following:

♦ Generate new Physical Data Model

♦ Update existing Physical data Model

You must indicate the following parameters when you generate a new PDM:

Parameter Description

DBMS Database Management System definition (DBMS) for the
resulting PDM

Link DBMS for the resulting PDM refers to the DBMS definition
file stored in the DBMS library

Local to the Model DBMS for the resulting PDM is a copy of the DBMS
definition file stored in the DBMS library

Name File name for the resulting PDM

Code Reference code for the resulting PDM

Generate new
Physical Data
Model

Chapter 7 Generating a Physical Data Model from an Object-Oriented Model

219

You must indicate the following parameters when you update an existing
PDM:

Parameter Description

Select Model Target Physical Data Model. This is the existing PDM
that the newly generated PDM (source model) is
merged with to create an updated PDM

DBMS Current Database Management System definition
(DBMS) for the existing PDM

Preserve Modifications When selected, allows a comparison and merge of the
newly generated PDM (default PDM) with the existing
PDM

Clearing the Preserve Modifications checkbox
When Preserve modifications is not selected, PowerDesigner
automatically replaces the selected target model (existing PDM) with the
newly generated PDM. If you want to choose which objects to add or
delete from the target model, you must select Preserve Modifications to
compare and merge the two PDM.

Update existing
Physical Data
Model

Generating a PDM from an OOM

220

Defining PDM generation options

You can set the following general generation options:

Option Description

Check model Checks the model before generating the PDM, and stops
generation if an error is found

Save generation
dependencies

When selected, PowerDesigner keeps a record of which model
was generated from

Table prefix Helps you identify a table more easily in the model

Update Rule Update referential integrity defined for references

Delete Rule Delete referential integrity defined for references

PK index names Primary key index name

Key index
names

Alternate key index name

FK index names Foreign key index name

FK threshold Minimum number of estimated records in a table that are
necessary before a foreign key index can be created

Check model before generation
If you select the Check Model option, the procedure to generate a PDM
starts by checking the validity of the OOM or package. A PDM results
when no errors are found. You can set check options by selecting
Tools➤ Check Model.

Object selection parameters

You select objects for PDM generation from the Selection page.

You can display in the list, objects in the current model, or objects in
individual packages contained in the model.

If you select the Include Sub-packages tool, you can display in the list either
all objects in the current model, or all objects in a package.

Listing objects
contained in a
model or package

Chapter 7 Generating a Physical Data Model from an Object-Oriented Model

221

You have the following selection options:

Parent object
Include Sub-
packages Displays

Model Selected All objects in model including all objects
contained in packages and sub-packages

Model Not selected All objects in model except objects contained
in packages and sub-packages

Package Selected All objects contained in package including
all objects contained in sub-packages

Package Not selected All objects in package except objects
contained in sub-packages

Objects selected in the model
Objects selected in your diagram can be automatically selected for
generation by clicking the Use Graphical Selection tool in the Selection
page tool bar.

Generating a new PDM

When you generate from an OOM to a new PDM, PowerDesigner creates a
new PDM containing all the objects that you selected to generate in the
OOM. The newly created PDM appears in the browser and the corresponding
diagram opens in the main diagram window.

You can only generate a PDM from the active OOM diagram window.

� To generate to a new PDM from an OOM:

1 Select Tools➤ Generate Physical Data Model.

Generating a PDM from an OOM

222

The PDM Generation Options dialog box appears.

2 Click the Generate new Physical Data Model radio button.

3 Select the DBMS you want to be associated to your model from the
DBMS dropdown listbox.

4 Type a new name and code, otherwise, the PDM will have the same
name and code as the OOM.

5 Click the Detail tab.

The Detail page appears.

Chapter 7 Generating a Physical Data Model from an Object-Oriented Model

223

6 Select or clear PDM generation options.

7 Click the Selection tab.

The Selection page appears.

8 Select the name of an OOM from the Select Location dropdown list.

Generating a PDM from a package
To generate a PDM from a package, select the package name from
the Select Location dropdown listbox at the top of the page.

To generate PDM from a sub-package, select the Sub-Packages
Included tool next to the Selection Location dropdown listbox, and
then select a sub-package from the dropdown listbox.

9 Select checkboxes corresponding to each table that you want to generate.

10 Clear checkboxes corresponding to each table that you do not want to
generate.

11 Click OK.

Generating a PDM from an OOM

224

The Output window shows the progress of the generation process. The
new PDM appears in the diagram window.

Updating an existing PDM

There are two ways to update an existing PDM depending on whether the
Preserve Modifications options is selected or not selected:

Preserve Modifications Result

Selected You can manually compare and merge existing
PDM (target model) with the newly generated
PDM (source model)

Not selected The existing PDM is automatically replaced by the
newly generated PDM

When Preserve Modifications is selected, the Merge Models window appears
after the new PDM has been successfully generated. You can use the Merge
window to select objects to be updated, deleted, or added to the target model.

The target model must be open in the workspace to be merged with a source
model.

You can only generate a PDM from the active OOM diagram window.

The existing PDM, into which you want to generate objects from the OOM,
must be open in the workspace.

� To update an existing PDM by generating from an OOM:

1 Select Tools➤ Generate Physical Data Model.

Chapter 7 Generating a Physical Data Model from an Object-Oriented Model

225

The PDM Generation Options dialog box appears. If you do not have a
PDM in the current Workspace, the Update existing Physical Data
Model option is not available.

2 Select the Update existing Physical Data Model radio button.

3 Select a target model from the Select Model dropdown listbox. This is
the existing model that you want to update.

The DBMS that is attached to the model appears in the DBMS box.

Preserve modifications
If you want to preserve the existing objects in the PDM, then the
Preserve modifications checkbox must be selected. If you clear this
checkbox, all existing objects in the PDM will be removed from the
model, leaving only the objects generated from the OOM.

4 Click the Detail tab.

Generating a PDM from an OOM

226

The Detail page appears.

5 Select or clear PDM generation options.

6 Click the Selection tab.

The Selection page appears.

7 Select the name of an OOM from the Select Location dropdown list. The
default PDM is generated from this OOM.

Chapter 7 Generating a Physical Data Model from an Object-Oriented Model

227

Generating a CDM from a package
To generate a CDM from a package, select the package name from
the Select Location dropdown listbox at the top of the page.

To generate CDM from a sub-package, select the Sub-Packages
Included icon next to the Selection Location dropdown listbox, and
then select a sub-package from the dropdown listbox.

8 Select class checkboxes for each table that you want to generate.
or
Clear class checkboxes for each table that you do not want to generate

9 Click OK.

If you selected the Preserve Modifications checkbox, the Merge Models
window appears.

If you cleared the Preserve Modifications checkbox, the updated CDM
appears in the diagram window.

Merging models
The Merge Models dialog box shows the newly generated PDM in
the Source pane, and the existing PDM in the Target Model pane.
You can select or clear object check boxes in the Source Model pane
for PDM objects that you want to be included or deleted in the target
model.

� For more information on merging models, see the chapter
Comparing and Merging Models in the PowerDesigner General Features
Guide.

Generating a PDM from an OOM

228

229

C H A P T E R 8

Using Object Languages

This chapter explains how to use an object language in an OOM.

Topic Page

Object languages 230

Using the object language editor 239

Object language editor categories 241

About this chapter

Contents

Object languages

230

Object languages
An object language contains specifications for a particular language. It
provides PowerDesigner with the syntax and guidelines for implementing
stereotypes, data types, scripts and constants for an object language.

Every OOM is attached by default to an object language. When you create a
new OOM, you choose an object language.

The definition for an object language can be edited from its property sheet, in
which you can select and configure parameters that are used when defining
objects or generating from an OOM.

You can attach only one particular object language to an OOM.

Types of object language

You can associate the following standard object languages to an OOM:

Object
language type Description

Analysis General language in which you define parameters for models
from which you want to generate a CDM or a PDM, or that
you build simply for modeling purposes only

Standard Java Standard Java language in which you can define parameters
relating to Java code and generation

PowerBuilder Standard PowerBuilder language in which you can define
parameters relating to generating objects for PowerBuilder

XML – DTD Standard XML language in which you can define parameters
relating to generating objects in XML format

XML - Schema The same as standard XML language properties, but also
includes XML schema specifications used by certain XML

XML - Data Used for XML Data specification. Mapping is defined by the
XOL specification

Chapter 8 Using Object Languages

231

Accessing object language properties

There are two different ways of accessing and modifying an object language
properties:

Object
language Menu item Description

Linked (to
all models)

Tools➤ Resources➤ Object
Languages

Used to define object languages for
all models that are linked to this
object language

Local to the
model

Language➤ Edit Current
Object Language

Used to define the object language
that is local to the current OOM

Modifying the current object language

You can modify the properties of the object language that is associated to the
current model.

If the object language of the current model is local to the model, then any
changes you make to the object language apply only to the current model.

If the current model is linked to an object language, then any changes you
make to the object language properties apply to all models that are linked to
the object language.

� To modify a value of a current object language:

1 Open an OOM.

2 Select Language➤ Edit Current Object Language.

Object languages

232

The Object Languages Properties dialog box appears. In the left pane is
a list of categories and sub-categories in which are contained the values
that you can modify.

3 Expand a category node (and its sub-category if it has one), and select a
value.

The name, associated comment, and value of the field appear in the zone
to the right of the explorer window.

4 Modify the comment or value as required.

5 Click OK.

Chapter 8 Using Object Languages

233

The next time you open an OOM, the modifications that you made in the
object language editor will remain the same for the newly opened model.

Modifying linked object language properties

You can change any of the parameters of existing linked object languages.
The changes you make apply to all models that are linked to the object
language.

� To modify the parameters of a linked object language:

1 Open an OOM.

2 Select Tools➤ Resources➤ Object Languages.

The Object Languages window appears.

3 Select an object language and click Properties.
or
Double-click an object language.

Object languages

234

The Object Languages Properties dialog box appears. In the left pane is
a list of categories and sub-categories in which are contained the values
that you can modify.

4 Expand a category node (and its sub-category if it has one), and select a
value.

The name, associated comment, and value of the field appear in the zone
to the right of the explorer window.

5 Modify the comment or value as required.

6 Click OK.

Chapter 8 Using Object Languages

235

Changing the object language of an OOM

You can change the object language for an OOM, defining the new object
language as being local to the model or as being linked to the model.

� To change the object language of an OOM:

1 Open an OOM.

2 Select Language➤ Change Current Object Language.

The Change Object Language window appears.

3 Select a new object language from the Object Language dropdown
listbox in the New groupbox.

4 Select the Link radio button if you want the new object language to be
the general object language available for all models.
or
Select the Local to the model radio button if you want the new object
language properties to apply only to the current model.

The chosen object language becomes the new one for the current model.

Creating a new object language

You can create a new set of object language properties and associate them to
an OOM.

� To create a new object language:

1 Open an OOM.

2 Select Tools➤ Resources➤ Object Languages.

Object languages

236

The Object Languages window appears.

3 Click the New tool.

The New Object Language window appears.

4 Type a name for the new object language in the Name box.

5 Select an existing object language from the Copy from dropdown listbox
if you want the new object language to be based on an existing one.

6 Click OK.

Chapter 8 Using Object Languages

237

The Object Languages Properties dialog box appears.

7 Expand the category nodes as appropriate and modify comments or
values as required.

8 Click OK.

A standard Windows Save As box appears.

9 Type the filename and click Save.

The object language is saved in a file with the XOL extension.

You return to the Object Languages window with the new object
language selected.

Object languages

238

10 Click Close.

� For information on how to associate an object language to an OOM, see
the section Changing the object language of an OOM.

Chapter 8 Using Object Languages

239

Using the object language editor
You use the object language editor to consult or modify parameters that
appear in categories or sub-categories of an Object-Oriented Model.

The object language editor is made up of a number of categories, sub-
categories, that contain parameters. When you select a category or a
parameter, its comment and values are displayed in fields in the right-hand
side of the of the dialog box. You define object language editor parameters
by modifying the values contained in these fields.

Each category and sub-category in the object language editor has the
following properties:

Property Description

Name Name of category or sub-category

Comment Description of selected category or sub-category

Each field in the object language editor has the following properties:

Property Description

Name Field name

Comment Description of selected field

Value Field value

The values that you define as parameters are used to define object
stereotypes, data types, scripts, and constants.

You can add new values, modify or delete existing ones. Any changes you
make to parameters in the object language editor apply to all new objects that
you create in existing or new models.

Categories

Fields

Values

Using the object language editor

240

Modifying values in the object language editor

You have to use the object language editor from an Object-Oriented Model.
The modifications that you make to values in the object language editor will
apply to the current model, as well as to all new Object-Oriented Models.

When you right click a category or a field in the object language editor, the
following editing options appear:

Edit option Description

Add items… Allows you to add a renamed copy of a selected field, to the
list of fields in a category.
When you select Add Items, a selection window appears. It
contains a list of fields for the category. To add a field to the
category, click the fieldname to select it, and click OK. The
new field is added at the bottom of the listed fields for that
category

Remove Deletes the selected category or field

Restore Comment Restores the default comment for a selected category or field
which has been modified

Restore value Restores the default value for a selected field which has been
modified

Object language
editor edit menu

Chapter 8 Using Object Languages

241

Object language editor categories
The values you define as parameters fall into three categories:

Category Description

General Object language identification

UML Object stereotypes as defined in UML

Script Generation characteristics, command definition, and data type
translations

Extended
Attributes

Extended attributes for the OOM objects that will be used in the
generation process

General category

The values that you define in the General category are used when you
generate from an Object-Oriented Model. For example, when you generate a
Java script file, the values you define in this category appear at the beginning
of the file.

The following parameters are defined by default in an OOM:

Parameter Description Default value

Product Name of the model PowerDesigner

Version Version of the model 7.0

Family Default language for current model Java

UML category

In the UML category, you can define the stereotypes of all objects that can
have stereotypes. You can modify existing default stereotypes, or define new
stereotypes for any object in the model.

When you modify the values of a stereotype for an object in an OOM, the
changes apply to all existing objects and all new objects, of the same type,
that you create in the model.

You can create new stereotypes for all objects in an OOM, or you can modify
the values of existing ones.

Stereotypes

Object language editor categories

242

The following objects have existing default stereotypes that you can modify:

♦ Class

♦ Operation

♦ Generalization

♦ Dependency

♦ Realization

♦ Package

Class stereotypes

A class has the following default stereotypes:

Stereotype Description

actor Coherent set of roles

enumeration List of named values used as the range of a particular
attribute type

exception Exception class. Used mostly in relation to error
messages

implementationClass Class whose instances are statically typed, and that
defines the physical data structure and methods of a class
as implemented in traditional programming languages

process Heavyweight flow that can execute concurrently with
other processes

signal Specification of an asynchronous stimulus communicated
between instances

thread Lightweight flow that can execute concurrently with other
threads within the same process. Usually executes inside
the address space of an enclosing process

type Abstract class used only to specify the structure and
behavior of a set of objects, not the implementation

utility Class that has no instances

Default stereotypes

Chapter 8 Using Object Languages

243

Operation stereotypes

An operation has the following default stereotype:

Stereotype Description

constructor Operation that creates and initializes an instance of a class

Generalization stereotypes

A generalization has the following default stereotype:

Stereotype Description

implementation Specifies that the child object inherits the implementation of
the parent object but that it does not make public its interfaces,
nor support them, thus violating its substitutability

Object language editor categories

244

Dependency stereotypes

A dependency has the following default stereotypes:

Stereotype Description

access Public contents of the target package that can by accessed by the
source package

bind Source object that instantiates the target template using the given
actual parameters

call Source operation that invokes the target operation

derive Source object that can be computed from the target

friend Source object that has special visibility towards the target

import Specifies that everything that is declared as public in the target
object becomes visible to the source object, as if it were part of the
source object definition

include Use case incorporates the behavior of another use case at a
location that is specified by the source

instantiate Operations on the source class create instances of the target class

refine Degree of abstraction of the source object is finer than that of the
target object

trace Specifies that there is an historical link between the source object
and the target object

use Semantics of the source object are dependent on the semantics of
the public part of the target object

Chapter 8 Using Object Languages

245

Package stereotypes

A package has the following default stereotypes:

Stereotype Description

Facade Package that is a view of another package

Framework Package that consists mostly of patterns

Model Specifies a semantically closed abstraction of a system

Stub Package that serves as a proxy for the public contents of another
package

Subsystem Grouping of elements, some of which constitute a specification of
the behavior offered by the other contained elements

System Package that represents the entire system being modeled

Script category

The Script category contains parameters that influence what will be included
in the script files that you generate from an OOM.

The Script category contains the following sub-categories:

Sub-category Description

Constants Constant values

Data Types Basic data type values

GenScripts Constructor value

Namings Getter and Setter operation default name values

Events Standard event values

Object language editor categories

246

Default constants

The following constant values are defined by default:

Constant Default value

Null 0

True TRUE

False FALSE

Void void

Bool boolean

Object scripts

Depending on the object language family (Java, XML, …) some pieces of
generated code can be parameterized in this section.

Each object concerned by the generation process has a sub-category where its
definition and other topics can be defined.

Chapter 8 Using Object Languages

247

The following table lists all the objects that can be customized, with an
example for each object specification.

Object Specification Example

Class Definition: generated
code for a class

<!ELEMENT %CSFRNAME% EMPTY>
<!ATTRLIST %CSFRNAME
 %ATTRDEFINITIONS%
>

Interface Definition: generated
code for an interface

Public interface %CSFRNAME% {
%ATTRDEFINITIONS%
%OPERDECLARATIONS%
}

Attribute Definition: generated
code for an attribute

%ATTRNAME% (CDATA)

Reference: generated
code for a referenced
attribute (migrated by a
navigable association)

%ATTRNAME% %IDREF%

ListItem: definition
inside a list of attributes

%ATTRNAME%

Operation Definition: generated
code for an operation

%OPERDTTP% %OPERNAME% {
 %OPERBODY%
}

Declaration: declaration
or prototype of the
operation

%OPERDTTP% %OPERNAME%;

Parameter Definition: generated
code for a parameter

%PARMDTTP% %PARMNAME%

Object language editor categories

248

XML Mapping

The reverse engineering of XML Data documents needs a mapping table to
identify which element or attribute becomes a class, attribute or association in
the reversed OOM.

The XML Mapping sub-category, defined under Object scripts, contains
three maps: ClassMapping, AttributeMapping and AssociationMapping.

In each map, the ‘ID’ item specifies the name of the element that will become
an object. The name item specifies the attribute or sub-element that will be
used as a name for the reversed object. For each kind of object other items
may be specified.

Default data types

You can modify the following basic data types:

Data type Default value

char TXT

boolean BL

byte BT

short SI

int I

long LI

float F

double N

* TXT

Chapter 8 Using Object Languages

249

Namings

You can modify the following default names for Getter and Setter operations:

Name Default value

* set%Code%

Name Default value

boolean is%Code%

* get%Code%

Event

You can use this sub-category to define events on operations. The default
exisiting events are constructor and destructor.

Extended Attributes category

The Extended Attributes category allows he user to define extended attributes
for the OOM objects.

The extended attributes can be used in the generation process. Each
extended attribute becomes a variable that can be referenced in the scripts
defined in the Script category.

Getter operation

Setter operation

Object language editor categories

250

251

C H A P T E R 9

Using Business Rules

This chapter describes how business rules help you model information.

Topic Page

What is a business rule? 252

Defining business rules in an OOM 253

Applying business rules to objects 256

About this chapter

Contents

What is a business rule?

252

What is a business rule?
A business rule is a written statement specifying what the information system
must do or how it must be structured to support business needs.

A business rule is a rule that your business follows. A business rule could be
a government-imposed law, a customer requirement, or an internal guideline.

Business rules often start as simple observations, for example "customers call
toll-free numbers to place orders." During the design process they develop
into more detailed expressions, for example what information a customer
supplies when placing an order or how much a customer can spend based on
a credit limit.

Business rules guide and document the creation of a model. For example, the
rule "an employee belongs to only one division" can help you graphically
build the link between an employee and a division.

Business rules complement model graphics with information that is not easily
represented graphically. For example, some rules specify physical concerns
in the form of formulas and validation rules. These technical expressions do
not have a graphical representation.

You can attach business rules to objects in an OOM. You can generate
business validation rules as check parameters if the validation rules are
attached to domains.

� For more information on defining and using check parameters, see the
chapter Building an Object-Oriented Model.

Starts as an
observation

Guides modeling

Complements
graphics

Check parameters

Chapter 9 Using Business Rules

253

Defining business rules in an OOM
You can define a business rule which can be attached to the following objects
in an OOM:

Domains
Classes
Interfaces
Attributes
Identifiers
Operations
Associations
Generalizations
Realizations
Dependencies

Types of business rule

In PowerDesigner, you can define several different types of business rules.

Rule type Describes Example

Definition Characteristics or properties of
an object in the information
system

A customer is a person identified
by a name and an address

Fact Certainty or existence in the
information system

A client may place one or more
orders

Formula Calculation employed in the
information system

The total order is the sum of all
the order line costs

Validation Constraint on a value in the
information system

The sum of the order totals for a
given client must not be greater
than that client’s allowance

Defining business rules in an OOM

254

Business rule properties

A business rule definition includes the following properties:

Property Description
Maximum
length

Name Name for the rule 254

Code Reference name for the rule 254

Comment Descriptive label for the rule —

Type Indicates whether the rule is a definition, a fact, a
formula, or a validation

—

Expression Presence of associated expression —

Notes Presence of associated notes —

Creating a business rule

Before you create business rules, formulate your rules by asking yourself the
following questions:

♦ What business problems do I want to address?

♦ Are there any procedures that my system must respect?

♦ Do any specifications dictate the scope of my project?

♦ Do any constraints limit my options?

♦ How do I describe each of these procedures, specifications, and
constraints?

♦ How do I classify these descriptions: as definitions, facts, formulas, or
validation rules?

Chapter 9 Using Business Rules

255

� To create a business rule:

1 Select Model➤ Business Rules.

The List of Rules appears. It displays the business rules defined for the
model.

2 Click a blank line in the list.
or
Click the Add a Row tool.

An arrow appears at the beginning of the line.

3 Type a name and a code for the business rule.

4 Click Apply.

The creation of the new business rule is committed.

5 Click the new business rule line.

An arrow appears at the beginning of the line.

6 Click the Properties tool.
or
Double click the arrow at the beginning of the line.

The property sheet for the new business rule appears.

7 Select a business rule type from the Type dropdown listbox

8 Click OK.

Applying business rules to objects

256

Applying business rules to objects
From the list of business rules, you can apply a business rule to existing
objects. You can also apply a business rule to objects from their property
sheets or lists.

Applying a business rule to an object

You can add business rules that already exist in the model, and which belong
to other objects.

� To apply a business rule to an object:

1 Double-click an object in the model.

The object property sheet appears.

2 Click the Rules tab.

The Rules page appears.

3 Click the Add Rules tool.

Chapter 9 Using Business Rules

257

The Selection window appears. It contains a list of all the business rules
that exist in the model, with the exception of those that already belong to
the object.

4 Select the business rules that you want to add to the object.

5 Click OK.

The business rules are added to the object and appear in the list of
business rules for the object.

6 Click OK.

Attaching an expression to a business rule

A business rule typically starts out as a description. As you develop your
model and analyze your business problem, you can complete a rule by adding
a technical expression.

Each business rule can include two types of expression:

♦ Server

♦ Client

Expressions are used essentially in a CDM or a PDM.

� For more information on expressions, see the chapter Using Business
Rules in the PowerDesigner PDM User’s Guide.

Applying business rules to objects

258

259

Glossary

A class that cannot have any direct instances

An form of association that specifies a part-whole relationship between a
component class and an aggregate class

A structural relationship that describes a set of links between objects

The endpoint of an association, a role specifies the multiplicity and visibility
between the association and the class to which it is connected

A named property of an object that defines the characteristics of the object

Reusable software component that can be visually manipulated in a software
development tool

A written statement specifying what the information system must do or how it
must be structured to support business needs

The number of elements in a set. The number has to be specific and cannot
be a range, as is the case with multiplicity

A description of a set of objects that share the same attributes, operations,
relationships, and semantics

abstract class

aggregation

association

association role

attribute

Beaninfo class

business rule

cardinality

class

Glossary

260

A class diagram is a view of a model that shows a set of packages, classes,
interfaces, and their relationships that together represent the logical static
design view of a system. A class diagram may contain all or part of the class
structure of a system

A classifier is a mechanism that has structural (attributes) and behavioral
(operations) features. All objects that can have instances are classifiers

A form of aggregation of an association in which the class is attached to the
association role is may be a part of only one composite at a time

An operation that creates and initializes an instance of a class

A type whose values have no identity. Data types include primitive types and
enumeration types

A semantic relationship between two modeling elements, in which a change
to one modeling element (the independent element) may affect the semantics
of the other modeling element (the dependent element)

Set of values for which a data item is valid

A relationship between a more general element (the parent) and a more
specific element (the child). The more specific element is fully consistent
with the more general element and contains additional information

An identifier is a class attribute, or a combination of class attributes, whose
values uniquely identify each occurrence of the class

A class definition within another class definition

A collection of operations used to specify the externally visible behavior of a
class, object, or other entity. In the case of a class or object, the interface
includes the signatures of the operations

class diagram

classifier

composition

constructor

data type

dependency

domain

generalization

identifier

inner class

interface

Glossary

261

A specification of the range of allowable cardinalities that a set may assume

Class structure that is the logical design view of a software system. An OOM
is essentially a static conceptual model of a software system

Contains the specifications for a particular language. It provides
PowerDesigner with the syntax and guidelines for implementing stereotypes,
data types, scripts and constants for a object language

The implementation of a service that can be requested from an object in order
to affect behavior. An operation has a signature, a name, and a list of
parameters

A general purpose mechanism for organizing elements into groups

Specification of a variable that can be changed, passed, or returned.
Parameters are used only for operations

Lifetime of the instances of a class

An object that continues to exist after the process that created it has ceased to
exist

A semantic relationship between classifiers, in which one classifier specifies
a contract that another classifier guarantees to carry out

A list of values returned by a call of the operation

The named specific behavior of an object participating in a particular context

The name and parameters of an operation

multiplicity

Object-oriented
model (OOM)

object language

operation

package

parameter

persistence

persistent object

realization

return type

role

signature

Glossary

262

An extension of the vocabulary of the UML, which allows you to create new
kinds of building blocks that are derived from existing ones but that are
specific to your problem

An object that ceases to exist when the process that created it ceases to exist

Denotes how an object can be seen and used by other objects

stereotype

transient object

visibility

Index

263

A
abstract

class 18
operation 67

abstract class 259
access

dependency 109
actor

class 20
add

attribute 59
constructor 73
operation 84

add object
class 29
interface 41

add operation
attribute 79

additional
check parameter 131

additional checks
domain 120

aggregation 259
association 98, 102
role 102

application
PowerBuilder 191

apply
business rule 132, 256
validation rule 132

archived Java files
reverse engineering 151

association 259
aggregation 98, 102
associative class 102
cardinality 101, 104
change to class 102
changeability 98
check 136
class attribute 102

association (continued)
code 98
comment 98
composition 98, 102
create 99
define 97, 102
display 106
ends 97
generate PDM 216
link 97
list 104
modify 103, 104
multiplicity 98, 101
name 98
navigability 98
ordering 98, 101
property 98, 103
role 97, 98, 100, 101, 259
Rose import 146, 148
stereotype 98
symbol 106
tool 5
visibility 98, 102

attach
attribute 48
attribute to domain 57
inner class 24

attribute 259
add 59
add operation 79
attach 48
Browser 51
cardinality 51
changeability 49
check 136
check parameter 130, 132
class 30
code 49
comment 49
create 51, 59
data type 49, 50
define 48
derived 49

264

attribute (continued)
detail 58
diagram 53
display 60
domain 49, 57
duplicate 59
enforce coherence 9
icon 60
identifier 49
initial value 49
interface 42
keywords 60
length 49
list 52, 56
markers 60
model option 9
modify 54, 55, 56
multiplicity 49, 51
name 49
operation 79
precision 49
property 49, 54, 55
Rose import 147
show 60
static 49
stereotype 49
symbol 60
validation rule 132
variable 132
visibility 49, 50, 60

automatic
correct 142

automatic correction
check 137
check option 141

B
BeanInfo 259

check 136
generate 186

binary
data type 127

bind
dependency 109

bitmap
data type 127

boolean
data type 126, 203, 217

Browser
attribute 51
class 22
interface 37
operation 68

business rule 259
apply 132, 256
check parameter 252
create 254
define 252
expression 132, 257
object 256
OOM 253
property 254
type 253
validation 132

byte
data type 126, 217

C
call

dependency 109
cardinality 259

association 101, 104
attribute 51
class 18, 21
role 101, 104

category
constant 246
data type 248
extended attributes 249
naming 249
object language 239, 241
script 245

CDM
data type 203
generate 202, 204
generate option 204
generate options 205
generate package 213
generation options 204
new 207
objects generated 202
preserve modifications 211
select generation objects 206
update 210

changeability
association 98

265

changeability (continued)
attribute 49

check
association 136
attribute 136
automatic correction 137
BeanInfo 136
class 136
correct 141, 142
error list 142
generalization 136
interface 136
manual correction 137
model 138
OOM 136, 141, 142
operation 136
option 137, 138
realization 136
view 136

check option
automatic correction 141
detail 141
manual correction 141
recheck 141

check parameter
additional 131
attribute 130, 132
business rule 252
define 130
domain 130, 132
property 130
standard 130, 131
type 130
validation 132
validation rule 130

child
dependency 108
generalization 91

class 259
abstract 18
actor 20
add object 29
associative 102
attribute 30
Browser 22
cardinality 18, 21
change from association 102
check 136
classifier 27
code 18

class (continued)
comment 18
create 21
default stereotype 20
define 17
diagram 23
display 34
enumeration 20
final 18
generate 18
generate PDM 216
implementationClass 20
inner 23
list 22, 28
modify 27, 28
name 18
operation 31, 77
persistence 18
preview code 33
process 20
property 18, 19, 20, 27
realization 114
Rose import 146, 147
signal 20
stereotype 18, 19, 20, 242
symbol 34
thread 20
tool 5
type 18, 20
utility 20
visibility 21

class diagram 260
classifier 260

class 27
define 27

client
expression 132

class
association 98
attribute 49
body 154
class 18
comment 152
dependency 108
domain 120
generalization 91
identifier 62
interface 36
Java 154
OOM 11

266

class (continued)
operation 67
package 14
parameter 88
preview from class 33
preview from interface 45
realization 114

comment
association 98
attribute 49
class 18
dependency 108
domain 120
generalization 91
identifier 62
interface 36
Java code 152
OOM 11
operation 67
package 14
parameter 88
realization 114

compile
reverse engineering Java 158

composition 260
association 98, 102
role 102

conceptual
data type 203

constant
object language 246
script 246

constraint
business rule 252

constructor 260
add 73
Copy 76
Default 74
operation 68, 73

Copy
constructor 76

correct
automatic 142
check 141, 142
manual 142
OOM 141, 142

create
association 99
attribute 51, 59
business rule 254

create (continued)
class 21
dependency 109
domain 121
generalization 92
identifier 63
interface 37
model 6
object language 235
OOM 4, 6
operation 68, 84
parameter 89
realization 115

creation
tools 5

current
language 235
object language 231, 235

customize
language 240
object language 240
script 199

D
data type 260

attribute 50
binary 127
bitmap 127
boolean 126, 203, 217
byte 126, 203, 217
CDM 203
char 203
character 126
conceptual 203, 217
date 127
decimal 126, 217
domain 120, 123
double 203
float 126, 203, 217
image 127
integer 126, 203, 217
length 122, 125
money 126, 217
number 126, 217
object language 248
OLE 127
parameter 88
precision 122, 125

267

data type (continued)
script 248
select 123
serial 126, 217
short 203
time 127
translate 203, 217
txt 203
undefined 123

datatypes
options 9

date
data type 127

decimal
data type 126, 217

Default
constructor 74

default stereotype
class 20

define
association 97, 102
attribute 48
business rule 252
check parameter 130
class 17
classifier 27
dependency 108
domain 120
generalization 91
identifier 62
interface 36
OOM 4
operation 67
package 14
parameter 88
realization 114
reverse engineering 150
role 100
UML 3
validation rule 132

definition file
generate 184

delete rule
PDM generation option 220

dependency 260
access 109
bind 109
call 109
child 108
code 108

dependency (continued)
comment 108
create 109
define 108
derive 109
display 112
friend 109
import 109
include 109
independent 108
instantiate 109
link 108
list 112
modify 111, 112
name 108
parent 108
property 108, 111
refine 109
stereotype 109, 244
symbol 112
tool 5
trace 109
use 109

derive
dependency 109

derived
attribute 49

detach
inner class 26

detail
attribute 58

diagram
attribute 53
class 23
interface 38
operation 70

direction
parameter 88

directory
reverse engineering Java 151
reverse Java 161

display
association 106
attribute 60
class 34
dependency 112
generalization 95
interface 46
operation 85
package 15

268

display (continued)
realization 118

diverge
from domain 9

documentation
Rose import 146

domain 260
access list 121
attribute 49, 57
check 120
check parameter 130, 132
code 120
comment 120
create 121
create from Browser 121
data type 120, 123, 125
define 120
diverge from 9
enforce coherence 9
length 120, 122
model option 9
modify 129
name 120
OOM 120
precision 120, 122
property 120
validation rule 132
variable 132

duplicate
attribute 59
operation 77, 84

E
edit

object language 231
editor

language 239
object language 239

ends
association 97

Entity/Relationship
notation 205

enumeration
class 20

error list
check 142
navigate 142

error message
OOM 137, 141, 142
severity 137

event
operation 67
script 249

export control
Rose import 146

expression
business rule 132, 257
client 132
server 132

extended attributes 249

F
field

object language 239
file

open 8
final

class 18
operation 67

FK index names
PDM generation option 220

FK threshold
PDM generation option 220

float
data type 126, 217

friend
dependency 109

function
general 2
OOM 2

G
general

functions 2
language 241
object language 241

generalization 260
check 136
child 91
code 91
comment 91
create 92
define 91

269

generalization (continued)
display 95
implementation 92
list 95
modify 94, 95
name 91
parent 91
property 91, 94
Rose import 146, 148
stereotype 91, 92, 243
symbol 95
tool 5
virtual 91
visibility 91, 92

generate
BeanInfo 186
CDM 202, 204
class 18
definition file 184
interface 36
Java 182
Java Bean 186
new CDM 204, 207
new PDM 218, 221
PDM 216, 218
PowerBuilder 189
PowerBuilder application 191
PowerBuilder options 189
select object 180
sru 193
update CDM 205, 210
update PDM 219, 224
updated CDM 204
updated PDM 218
validation rule 132
XML 195
XML file 196

generate CDM
objects generated 202
options 205
package 213
preserve modifications 211
select objects 206

generate PDM
options 220
package 227
preserve modifications 225
select objects 220

Getter
operation 79

H
hierarchy

package 14

I
icon

attribute 60
operation 86

identifier 260
attribute 49
code 62
comment 62
create 63
define 62
list 66
modify 65, 66
name 62
primary identifier 62
property 62, 65

ignore comments
reverse Java 152
reverse PowerBuilder 166
reverse XML 174

ignore operation body
reverse Java 152
reverse PowerBuilder 166
reverse XML 174

image
data type 127

implementation
code 83
generalization 92
operation 83

implementationClass
class 20

import
dependency 109
model 145
OOM 145
Rose objects 146

In
parameter direction 88

include
dependency 109
sub-package 138

independent
dependency 108

270

initial value
attribute 49

inner class 23, 260
attach 24
detach 26
interface 41
reverse engineering Java 151

In\Out
parameter direction 88

instantiate
dependency 109

integer
data type 126, 217

interface 260
add object 41
attribute 42
Browser 37
check 136
code 36
comment 36
create 37
define 36
diagram 38
display 46
generate 36
inner class 41
list 38, 40
modify 39, 40
name 36
operation 44
preview code 45
property 36, 39
realization 114
Rose import 147
stereotype 36
symbol 46
tool 5
visibility 36, 37

introduction
overview 2

J
jar

reverse engineering Java 163
Java

code 154
code comment 152
generate 182

introduction (continued)
reverse engineering 151
reverse engineering inner class 151
reverse source file 156
script 199
zip 163

Java Bean
generate 186

Java reverse
compile 158
directory 161
options 152

JDK
library 153
load 153
model 153
open 153

K
key index names

PDM generation option 220

L
language

current 231, 235
editor 239
general 241
modify 240
object 230
script 245
UML 241

length
attribute 49
data type 49
domain 120

library
JDK 153
PowerBuilder 168
reverse Java 152
reverse PowerBuilder 166
reverse XML 174

link
association 97
dependency 108
generalization 91
realization 114

271

linked
object language 231

list
association 104
attribute 52, 56
class 22, 28
dependency 112
generalization 95
identifier 66
interface 38, 40
operation 69, 72
realization 118

load
JDK 153
PowerBuilder 168

local
object language 231

M
manual

correct 142
manual correction

check 137, 141
mark classifiers

reverse Java 152
reverse PowerBuilder 166
reverse XML 174

markers
attribute 60
operation 86

merge
model 144
OOM 144

merise
notation 205

model
check 138
create 6
import 145
JDK 153
merge 144
new 6
object selection 138
OOM 138
open 8
options 9
PowerBuilder 168
property 11

model (continued)
sub-package 138

model notation
generate CDM 205

model option
attribute 9

modify
association 103, 104
attribute 54, 55, 56
class 27, 28
dependency 111, 112
domain property 129
generalization 94, 95
identifier 65, 66
interface 39, 40
language 240
object language 240
operation 71, 72
realization 116, 118

money
data type 126, 217

multiplicity 261
association 98, 101
attribute 49, 51
role 101

N
name

association 98
attribute 49
class 18
dependency 108
domain 120
generalization 91
identifier 62
interface 36
OOM 11
operation 67
package 14
parameter 88
realization 114

namespace
package 14

naming
object language 249
script 249

navigability
association 98

272

new
model 6
object language 235
OOM 6

new CDM
generate 207

new PDM
generate 221

notation
Entity/Relationship 205
merise 205

number
data type 126, 217

O
object

business rule 256
generate 180
language 230
script 246
xml mapping 248

object language 261
category 239, 241
constant 246
create 235
current 231, 235
customize 240
data type 248
define 230
edit 231
editor 239
event 249
extended attributes 249
field 239
general 241
linked 231
local 231
modify 240
naming 249
OOM 11
parameter 233
script 245, 246
type 230
UML 241
value 239
xml mapping 248

object selection
check 138

object selection (continued)
model 138
package 138

objects
OOM 5
PowerBuilder 166
XML 174

OLE
data type 127

OOM 261
business rule 253
CDM objects 202
check 136, 137, 141, 142
code 11
comment 11
correct 141, 142
create 4, 6
define 4
domain 120
error 137, 138, 141, 142
function 2
generate CDM 202, 204
generate PDM 216, 218
import 145
merge 144
name 11
new 6
new CDM 207
new PDM 221
object language 11
objects 5
open 8
options 9
overview 2
PDM objects 216
property 11
roles 4
tools 5
translate to PDM 216
UML 3
update CDM 210
update PDM 224
validate 136
warning 137, 141, 142

OOM objects
translate to CDM 202

open
file 8
JDK 153
model 8

273

open (continued)
OOM 8
PowerBuilder 168
Rose model 145

operation 261
abstract 67
add 84
attribute 79
Browser 68
check 136
class 31, 77
code 67
comment 67
constructor 68, 73
create 68, 84
define 67
diagram 70
display 85
duplicate 77, 84
event 67
final 67
Getter 79
icon 86
implementation 83
interface 44
keywords 86
list 69, 72
markers 86
modify 71, 72
name 67
parent 67
parent class 78
property 67, 71
return type 67
Rose import 148
Setter 79
show 85
static 67
stereotype 67, 68, 243
symbol 85
visibility 67, 68, 86

options
datatypes 9
generate CDM 205
generate PDM 220
model 9
OOM 9
PowerBuilder 166
reverse engineering 152, 166, 174
reverse Java 152

options (continued)
XML 174

ordered
association 101

ordering
association 98, 101
role 101

Out
parameter direction 88

overview
OOM 2

P
package 261

association visibility 102
attribute visibility 50
class visibility 21
code 14
comment 14
define 14
display 15
generalization visibility 92
generate CDM 213
generate PDM 227
hierarchy 14
interface visibility 37
name 14
namespace 14
object selection 138
operation visibility 68
property 14
Rose import 147
stereotype 245
sub-package 14
symbol 15
tool 5

parameter 261
code 88
comment 88
create 89
data type 88
define 88
direction 88
generate PDM 218
name 88
object language 233
parent 88
property 88

274

parent
dependency 108
generalization 91
operation 67
parameter 88

parent class
operation 78

PDM
data type 217
generate 216, 218
generate from association 216
generate from class 216
generate options 220
generate package 227
generation options 218
new 221
preserve modifications 225
select generation objects 220
update 224

persistence 261
class 18

persistent object 261
PK index names

PDM generation option 220
PowerBuilder

application 191
generate 189
library 168
load 168
model 168
objects 166
open 168
options 166
reverse engineering 166, 169, 171
sru 193

PowerBuilder application
generate 191

precision 122, 125
attribute 49
domain 120

preserve modifications
generate CDM 211
generate PDM 225

preview code
class 33
interface 45

primary identifier
identifier 62

private
association visibility 102

private (continued)
attribute visibility 50
class visibility 21
generalization visibility 92
interface visibility 37
operation visibility 68

process
class 20

property
association 98, 103
attribute 49, 54
business rule 254
check parameter 130
class 18, 19, 20, 27
dependency 108, 111
domain 120
generalization 91, 94
identifier 62, 65
interface 36, 39
model 11
OOM 11
operation 67, 71
package 14
parameter 88
realization 114, 116
role 101

property sheet
association 103
attribute 55
class 27
dependency 111
generalization 94
identifier 65
interface 39
operation 71
realization 116

protected
association visibility 102
attribute visibility 50
class visibility 21
generalization visibility 92
interface visibility 37
operation visibility 68

public
association visibility 102
attribute visibility 50
class visibility 21
generalization visibility 92
interface visibility 37
operation visibility 68

275

R
realization 261

check 136
class 114
code 114
comment 114
create 115
define 114
display 118
interface 114
link 114
list 118
modify 116, 118
name 114
property 114, 116
stereotype 114
symbol 118
tool 5

recheck
check option 141

refine
dependency 109

return type 261
operation 67

reverse engineering
.java 151
code 154
define 150
inner class 151
Java 151
options 166, 174
PowerBuilder 166, 169, 171
XML 174, 175

reverse engineering Java
compile 158
directory 161
jar 163
options 152
source file 156
without body code 154
zip 163

role 261
aggregation 102
association 97, 98, 100, 101
cardinality 101, 104
composition 102
define 100
multiplicity 101
ordering 101

role (continued)
property 101

roles
OOM 4

Rose import
association 146, 148
attribute 147
class 146, 147
documentation 146
export control 146
generalization 146, 148
Implementation 146
interface 147
objects 146
open model 145
operation 148
package 147

rule
business rule 252
constraint 252
define 252

S
save generation dependencies

generate CDM 205
PDM generate option 220
PDM generation option 220

script
constant 246
customize 199
data type 248
event 249
Java 199
language 245
naming 249
object 246
object language 245, 246

select
data type 123

selection
tool 5

serial
data type 126, 217

server
expression 132

Setter
operation 79

276

severity
error 137

show
attribute preference 60
operation 85

signal
class 20

signature 261
sorted

association 101
source file

reverse engineering Java 156
sru

generate 193
PowerBuilder 193

standard
check parameter 131

standard checks
domain 120

static
attribute 49
operation 67

stereotype 262
association 98
class 18, 19, 20, 242
dependency 109, 244
generalization 91, 92, 243
interface 36
operation 67, 68, 243
package 245
realization 114

sub-package
hierarchy 14
include 138

Sybase SQL Anywhere
data type 217

symbol
association 106
attribute 60
class 34
dependency 112
generalization 95
interface 46
operation 85
package 15
realization 118

T
table prefix

PDM generation option 220
tanslate

CDM objects 202
PDMobjects 216

thread
class 20

time
data type 127

tool
functions 2

tools
OOM 5

trace
dependency 109

transient object 262
translate

data type 203, 217
type

business rule 253
class 18, 20
object language 230

U
UML

define 3
language 241
object language 241
OOM 3
terminology 3

undefined
data type 123

unordered
association 101

update CDM
generate 210

update PDM
generate 224
update rule 220

use
dependency 109

utility
class 20

277

V
validate

OOM 136
validation rule 130

apply 132
attribute 132
business rule 132
check parameter 132
define 132
domain 132
generate 132

value
object language 239

variable
attribute 132
domain 132

view
check 136

virtual
generalization 91

visibility 262
association 98, 102
attribute 49, 50, 60
class 21
generalization 91, 92
interface 36, 37
keywords 60, 86
operation 67, 68, 86

W
warning

OOM 137, 141, 142
without body code

reverse Java 154

X
XML

generate 195, 196
objects 174
options 174
reverse engineering 174, 175

xml mapping
object 248
object language 248

Z
zip

reverse engineering Java 163

278

