Programmers Manual

\{F, , , A, , , E, 100, 200 , "DIAPERS"

C, $80,156,0,1,1,1, B, L, L,, 1,0,1$

$T, 3,1,0,6,6,3,0,0,0,1,1,1, B, 1,1,0,01$
$T, A, 10,5,50,110,0,1,1,1, B, L, L$

$T, 6,5, v, 50,1,0,4,0,0,45,8, L, 01$

$2,1,90.41$ b"
$3,6387910981 " 1$

,
AVERY
DENNISON

Each product and program carries a respective written warranty, the only warranty on which the customer can rely. Paxar reserves the right to make changes in the product, the programs, and their availability at any time and without notice. Although Paxar has made every effort to provide complete and accurate information in this manual, Paxar shall not be liable for any omissions or inaccuracies. Any update will be incorporated in a later edition of this manual.
©2000 Paxar Americas, Inc. a subsidiary of Avery Dennison Corp. All rights reserved. No part of this publication may be reproduced, transmitted, stored in a retrieval system, or translated into any language in any form by any means, without the prior written permission of Paxar Americas, Inc.

WARNING

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

CANADIAN D.O.C. WARNING

This digital apparatus does not exceed the Class A limits for radio noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications.

Le présent appareil numérique n'émet pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques de la classe A prescrites dans le Réglement sur le brouillage radioélectrique édicte par le ministère des Communications du Canada.

Trademarks

Monarch®, Sierra Sport, and 9460 are trademarks of Paxar Americas, Inc. Paxar® is a trademark of Paxar Corporation. Avery Dennison $®$ is a trademark of Avery Dennison Corporation. Microsoft, Windows, and NT are trademarks of Microsoft Corporation. Novell and NetWare are trademarks of Novell, Inc. in the United States and other countries. Centronics is a registered trademark of Centronics Data Computer Corporation. Adobe and Acrobat are trademarks of Adobe Systems Incorporated. UFST, Monotype, the Monotype Iogo, and CG Triumvirate are trademarks of Monotype Imaging, Inc.

TABLE OF CONTENTS

GETTING STARTED 1-1
About This Manual 1-1
Standard Features 1-1
Creating an MPCLII Format Packet 1-2
Printer Memory 1-3
Using RAM 1-3
Using Flash Memory 1-4
Starting with a Design 1-4
Determining Format Contents 1-5
Determining the Print Area 1-5
Drawing Rough Sketches 1-6
Using Supply Layout Grids 1-7
Considering Field Types 1-8
Considering Fonts 1-9
Using the Format Worksheet 1-9
Filling in the Format Worksheet 1-9
CONFIGURING THE PRINTER 2-1
Setting Communication Parameters 2-2
Using MPCLII Conventions 2-3
MPCLII Punctuation 2-3
Standard Syntax Guidelines 2-4
Using Online Configuration Packets 2-5
Configuration Syntax Guidelines 2-8
Making Print Adjustments 2-8
Defining the System Setup Packet 2-9
Defining the Supply Setup Packet 2-10
Defining the Print Control Packet 2-12
Defining the Monetary Formatting Packet 2-13
Defining the Control Characters Packet 2-14
Resetting Control Characters 2-15
Using Immediate Commands 2-16
Enabling Immediate Commands 2-16
Sending Immediate Commands 2-16
Defining the Communication Settings Packet 2-18
Defining the Backfeed Control Packet 2-19
Special Considerations When Using Backfeed 2-20
Defining the Memory Configuration Packet 2-21
Checking Current Buffer Sizes 2-22
About Memory Buffers 2-23
Buffer Worksheet. 2-25
Buffer Allocation Considerations 2-25
Memory Considerations with Downloaded TrueType Fonts 2-26
Clearing Packets from Memory 2-27
Using the Font Packet 2-28
Uploading Format Header Information 2-30
DEFINING FIELDS 3-1
Defining the Format Header. 3-2
Defining Text Fields 3-3
Defining Bar Code Fields 3-8
Defining Constant Text Fields 3-15
Defining Line Fields 3-19
Line Types 3-19
Defining Box Fields 3-21
DEFINING FIELD OPTIONS 4-1
Applying Field Options 4-2
Combining Field Options 4-2
Option 1 (Fixed Data) 4-3
Option 2 (Data Type Restrictions) 4-4
Option 4 (Copy Data) 4-5
Merging Fields 4-6
Sub-Fields 4-6
Option 30 (Padding Data) 4-7
Sample Use for Padding 4-7
Option 31 (Calculate Check Digit) 4-8
Option 42 (Price Field) 4-9
Option 50 (Bar Code Density) 4-10
Option 51 (PDF417 Security/Truncation) 4-11
Option 52 (PDF417 Width/Length) 4-12
Option 60 (Incrementing/Decrementing Fields) 4-13
Fixing the First Number in the Incrementing Sequence 4-13
Option 61 (Reimage Field) 4-14
Using Check Digits 4-15
Sum of Products Calculation 4-16
Sum of Digits Calculation 4-17
CREATING GRAPHICS 5-1
Overview of Bitmapped Images 5-2
Determining a Method 5-2
Designing Bitmapped Images 5-3
Special Considerations 5-3
Using the Hex Method 5-4
Using the Run Length Encoding Method 5-6
Determining How to Store the Image 5-8
Using RAM 5-8
Using Temporary Storage 5-8
Creating a Graphic Packet 5-9
Positioning the Graphic Image 5-9
Defining the Graphic Header 5-11
Creating Bitmap Fields 5-13
Creating Next-Bitmap Fields 5-14
Creating Duplicate Fields. 5-15
Sample Hex Graphic Packet 5-16
Sample Run Length Graphic Packet 5-17
Placing the Graphic in a Format 5-18
Defining the Graphic Field 5-18
Sample Bitmap Graphic Image 5-20
PRINTING. 6-1
Defining the Batch Header 6-2
Defining the Batch Control Field 6-3
Defining Batch Data Fields 6-4
Using Special Characters in Batch Data 6-4
Merged or Sub-Fields 6-5
Incrementing Fields 6-5
Entering Batch Data for QR Code 6-6
Sample QR Code 6-6
Structured Append Mode 6-7
Sample QR Code using a Structured Append 6-8
Downloading Methods 6-9
Sequential Method 6-9
Batch Method 6-9
Batch Quantity Zero Method 6-9
Modifying Formats 6-10
Optional Entry Method 6-10
STATUS POLLING 7-1
Inquiry Request (ENQ) 7-2
Inquiry Response 7-2
ENQ Reference Table - Byte \#2 7-4
ENQ Reference Table - Byte \#2 (continued) 7-5
ENQ Reference Table - Byte \#3 7-6
ENQ Reference Table - Byte \#3 (continued) 7-7
Job Request 7-8
Job Response 7-9
Job Status 0, 1, 2 Response Table (Status 1 Codes) 7-13
Job Status 0, 1, 2 Response Table (Status 2 Codes) 7-14
TROUBLESHOOTING 8-1
Printing Diagnostics Labels 8-2
Reading Diagnostics Labels 8-3
Resetting Printers 8-3
If You Receive an Error Message 8-3
If the PC and Printer Aren't Communicating 8-4
Calling Technical Support 8-4
Additional Diagnostics Information 8-5
Data Errors 8-5
Format Errors 8-6
Batch Errors 8-8
Option Errors 8-9
Online Configuration Errors 8-10
Check Digit Errors 8-13
Graphic Errors 8-13
Communication Errors 8-14
Data Formatting Failures 8-15
Machine Faults 8-16
Flash Memory Errors 8-18
Hard Printer Failure Errors 8-19
PRINTER OPTIMIZATION 9-1
Adjusting the Print Quality 9-2
Reducing Imaging Time 9-3
General Format Tips and Hints 9-5
SAMPLES A-1
Sample UPCA Format Packet A-2
Sample MaxiCode Packets A-3
Mode 0 (Obsolete) Sample A-4
Mode 2 Sample A-5
Mode 3 Sample A-6
HangTag Example A-7
Tag Example A-7
Label Example A-8
Receipt Format Example A-8
Label Sample 2 A-9
Label Sample 3 A-9
FONTS B-1
Bitmap Font Information B-1
Monospaced Font Magnification B-4
Proportional Font Magnification B-6
CG Triumvirate ${ }^{\text {TM }}$ Typeface Bold (9 pt.) B-7
Height Magnification B-7
CG Triumvirate ${ }^{\text {TM }}$ Typeface (6 pt.) B-8
Height Maginfication 203 DPI B-8
Scalable/TrueType® Font Information B-9
Format Considerations B-9
Downloading Fonts B-10
Using UNICODE (Double-Byte) TrueType® Fonts B-11
Character Mapping Overview B-12
Sample UNICODE (Double-Byte) Font Format and Batch B-12
Licensing Your Fonts B-13
Using Font Numbers in Formats B-13
Locating the Font Number in a Font Packet B-14
SYMBOL SETS/CODE PAGES C-1
Supported Symbol Sets and Code Pages C-1
Using Code 128 Function Codes C-2
Entering Extended Characters C-2
Using International Character Sets/Code Pages C-2
Internal Symbol Set C-3
ANSI Symbol Set C-4
Bold Character Set. C-4
OCRA Character Set C-5
Code Page 437 (Latin U.S.) C-5
Code Page 850 (Latin 1) C-6
Code Page 852 (Latin 2) C-6
Code Page 855 (Russian) C-7
Code Page 857 (IBM Turkish) C-7
Code Page 860 (MS-DOS Portuguese) C-8
Code Page 1250 (Latin 2) C-8
Code Page 1251 (Cyrillic) C-9
Code Page 1252 (Latin 1) C-9
Code Page 1253 (Greek) C-10
Code Page 1254 (Turkish) C-10
Code Page 1255 (Hebrew) C-11
Code Page 1256 (Arabic) C-11
Code Page 1257 (Baltic) C-12
Code Page 1258 (Vietnamese) C-12
ASCII to Hexadecimal Conversion Chart C-13
Binary to Hex Conversion Chart C-16
Dot to Run Length Encoding Chart C-20
ON (Black) Dots C-20
OFF (White Dots) C-20
FORMAT DESIGN TOOLS D-1
Online Configuration Worksheet D-2
Batch Worksheet D-3
Check Digit Worksheet D-4
GLOSSARY G-1

GETTING STARTED

Before you read this manual, review the printer information in the Operator's Handbook.

About This Manual

This manual is for the developer who is creating the formats for the printer.

Use this manual to design and print your own custom formats on the Monarch® Sierra Sport ${ }^{\text {TM }} 2$ printer. This chapter creates a sample Monarch® Printer Control Language II (MPCLII) packet.

Standard Features

The following features are standard on the printer: 203 dots per inch (DPI) printhead, 1.89 inch by 12 inch maximum print image, print speed (1.5, 2, or 3 inches per second), graphical LCD, 5 buttons (on/off, feed, and 3 context-sensitive), 512K RAM with an additional 2MB flash memory.

Creating an MPCLII Format Packet

A format defines which fields appear and where the fields are printed on the label. The printer requires this information in a special form. This section describes how to create a sample MPCLII format packet.

Make sure supplies are loaded, you have a fully charged battery, the printer is connected to a host and ready to receive data, and you have software in the printer. Refer your Operator's Handbook for more information.

1. Type the following format header, in any text editor:

$$
\{F, 25, A, R, E, 200,200, " \text { FMT-25" }
$$

2. Type the following constant text field:
C,140,40,0,1,2,1,W,C,0,0,"SAMPLE FORMAT",1 |
3. Type the following bar code field:

$$
\text { B, 1, 12, F, } 85,40,1,2,40,5, L, 0
$$

4. Type the following text field:

$$
T, 2,18, V, 50,50,1,3,1,1, B, L, 0,0,1 \quad \mid\}
$$

For detailed information about the format header, text, constant text, and bar code fields, see Chapter 3, "Defining Fields." For information about batch packets, see Chapter 6, "Printing."

You have created a format packet for your MPCLII printer. Now, a batch packet must be created before you can print the format.
5. Type the following batch header, after the text field line:
\{B,25,N,1
6. Type the following bar code data:

1,"02802811111" |
7. Type the following text field data:

2,"TEXT FIELD" | \}
8. Save your file as SAMPLE.FMT.

SAMPLE FORMAI

text field
9. Import the packets into your communications software or send it to the printer's communication port through the Monarch ${ }^{\circledR}$ MPCL Toolbox Download Utility.

Printer Memory

The printer has both RAM and flash memory. You can use one or both types of memory, depending on how you use your printer.

Using RAM

Use RAM for temporary storage. It is volatile; the contents are lost when you turn the printer off. The printer has 512 K of RAM.

RAM can contain formats, graphics, batches, and fonts. In the header of each packet, you specify to send it to RAM. Then, to download them to the printer from a host device. See Chapter 3, "Defining Fields," for more information.

Using Flash Memory

Use flash memory for permanent storage. It is non-volatile; the contents stay in place until erased. The printer has 2 MB of flash memory, depending on your configuration.

To load flash memory, use either the Monarch® MPCL Toolbox Soft Font Utility (fonts) or the Label Designer software (formats).

Every time you download these packets into flash memory, another copy is made, even if it is already in memory. After doing this several times, you will eventually use up flash memory.

Starting with a Design

Before you create a format packet, you must design your label. There are several steps to designing a custom label:

1. Decide which fields should appear on your label. See "Determining Format Contents" for more information.
2. Determine your label size. Labels are available from Monarch in a wide variety of sizes. Your application and the amount of data you need to print determines the supply size. Contact your sales representative for more information.
3. Draw a rough sketch of your label. You may want to draw several variations to see what works best. See "Drawing Rough Sketches" for more information.
4. Identify the field types that appear on your label. See "Considering Field Types" for more information.
5. Decide which fonts you want to use. See "Considering Fonts" for more information.
6. Fill out your Format Worksheet. See "Using the Format Worksheet" for more information.

At this point, you are ready to use your format.
7. Create a format packet, based on how you filled out your worksheet. See Chapter 3, "Defining Fields," for more information.

Determining Format Contents

Before you lay out your format, you need to make a few decisions. For example:

- How large is your supply?
- Which fonts do you want to use?
- Do you want to include a bar code?
- Do you want to include graphics?

Determining the Print Area

The print area varies, depending on the size of your supply. Below are the maximum and minimum print areas. Notice that the top edge of the supply exits the printer first. There is a non-print zone (0.055 inches) on either edge of the supply.

Unit of Measure	Maximum Supply Size	Maximum Print Area	Minimum Supply Size	Minimum Print Area
English $(1 / 100 ")$	205×1200	189×1200	50×37.5	37.5×37.5
Metric $(1 / 10 \mathrm{~mm})$	521×3048	480×3048	127×95	95×95
Dots $(1 / 203$ dots $)$	416×2436	384×2436	102×76	76×76

The length you can print is dependent on the amount of memory you allocate for the image buffer. See "Defining the Memory Configuration Packet" in Chapter 2.

For exact print area measurements of your supply, see the supply layout grids in Appendix D.

Use the following formulas to convert inches to dots and metric:

```
Dots = inches x 203
Metric (1/10mm) = inches x 254
English (1/100 inch) = 100 x (dots/203)
Dots = Metric (1/10 mm) x . }79
```


Drawing Rough Sketches

After you decide what information you want to print, sketch how you want the information to appear on the label. Note any areas that are preprinted on the label, such as a logo.

As soon as you know what information to include on the label, and you have a rough sketch, you can use a supply layout grid to help you layout and size your label. If you do not want to use a grid, go to "Considering Field Types" to choose what information you want on your label.

*
24.95

Using Supply Layout Grids

A supply layout grid contains measurement markers. These markers help you accurately position information on your label.

Decide whether you want to design formats using English, Metric, or Dot measurements. Choose from the following grids:

- English

The English grid is measured in 1/100 inches.

- Metric

The Metric grid is measured in $1 / 10$ millimeters (mm).

- Graphic

The printer uses dots to print images on a label. The printhead has 203 dots per inch (DPI).

If you want to use the supply layout grids, a copy of each is in Appendix D, "Format Design Tools."

Considering Field Types

After you select a supply size, the next step in designing a format is to decide what information you want to print on the label. For example, you may want to print your company name, price of an item, and a bar code that combines information from other places. Everything you want to print falls into one of the following categories.

Field Type	Description	Examples
Text	Contains letters, numbers, or symbols you want to print.	item number, item description, department number, price, date
Bar Code	Used for printing bar codes that can be scanned.	item or serial numbers, zip codes, information you don't want to have visible to customers
Constant Text	Prints fixed characters that print without changing.	company name, company address
Line or Box	Highlights or separates items.	line marking out the regular price, border around the supply
Graphic	Contains a bitmap image or a compliance label overlay.	logos

All of the above field types except graphics are discussed in Chapter 3. See Chapter 5, "Creating Graphics" for information on including graphics in your format.

Considering Fonts

When working with fonts, you have three considerations:

- font appearance
- font size (bitmapped)
- font spacing (monospaced or proportional)

See Appendix B, "Fonts," for samples of each font.

Using the Format Worksheet

The Format Worksheet is divided into sections that list the field types. Each section has boxes to fill in with parameters that define your format. A format worksheet is included in Appendix D, "Format Design Tools."

Filling in the Format Worksheet

Decide what type of field to use on your label.

1. Make a copy of the Format Worksheet.
2. Define the Format Header.
3. Define options as you require them. See Chapter 4, "Defining Field Options" for more information.

CONFIGURING THE PRINTER

This chapter discusses how to

- set communication parameters.
- upload the printer's configuration or font information.
- configure the printer using online configuration packets.
- use immediate commands to control the printer's operation at any time.

Setting Communication Parameters

Use the following information if you are connecting to the printer's 9-pin serial port.

The communication parameters at the printer must match those at the host, or you will not be able to communicate.

You can use the communication settings packet to set communication parameters for your printer.

On MS-DOS computers, you can use the MODE command to set communication values on your PC.

For example
MODE COM1:9600,N, 8,1
This command sets your host to these communication values:

- a baud rate of 9600
- no parity
- 8 bit word length
- 1 stop bit

Using MPCLII Conventions

Here are some guidelines to follow when using MPCLII.

MPCLII Punctuation

Use the following symbols when creating MPCLII packets:

Character	Decimal Value	Description
\{ (left bracket)	123	start of header
\} (right bracket)	125	end of header
((vertical bar)	124	field separator*
, (comma)	044	parameter separator
"ABC" (quotation marks)	034	Quotation marks enclose character strings. Empty quotes ("") identify null strings or unused fields.
'comment' (single quotation marks)	039	Grave accents enclose comments. Any data enclosed in grave accents is ignored. Do not embed comments within a quoted string. Grave accents are also used to reject mainframe data.

These MPCL characters are the default.

* The field separator is the split vertical bar, which we are representing as in this manual. The decimal value is 124 . To enter this character, use the Shift key plus the Split Vertical Bar key on your computer's keyboard. Depending on your text editor, it may appear as a solid vertical bar or as a split vertical bar.

Standard Syntax Guidelines

When creating MPCLII packets:

- Begin each packet with a start of header (\{).
- End each packet with an end of header (\}).
- Define no more than 200 fields in a format. Each | indicates one field. However, options are not counted as fields.
- The field number (0-999) must be unique. Monarch recommends starting at 1 , instead of 0 .
- Do not use a field number more than once per format.
- Define all fields in the order you want to image/print them.
- Separate all parameters with a Parameter Separator (,).
- End each field with a Field Separator (i).
- Enter all information in CAPITAL letters, except words or phrases within quotation marks.
- Include all parameters for a field unless documented as optional.
- Define non-printable text fields before the field to which they apply.
- Define options immediately after the field to which they apply.
- Multiple options can be used with most fields. Options can be used in any combination except as noted with each definition.
- Keep in mind that proportionally spaced fonts need wider fields than monospaced fonts. For variable field data, use a letter "W" to determine the maximum field size.
- Do not place a new line (return) or any other non-printing character within a field definition. However, a carriage return or line break after each i makes your formats easier to read. T, 1,20, V, 30,30,1,1,1,1,B,C,0,0,0 । T,2,10, V, 50, 30, 1, 1, 1, 1, B, C, 0,0,0 ।
- Spaces are ignored, except within character strings.

Using Online Configuration Packets

Use online configuration packets to change the printer settings. You must send the online configuration packets one at a time, supplying all parameters for each packet. Leave the parameters blank that you do not need to change. For example, \{ $\mathrm{I}, \mathrm{A},,,, 1$ \} prints a slashed zero and uses the last sent online System Setup parameters.

Make a copy of the online configuration worksheet in Appendix D, "Format Design Tools," and save the original. Packets A - M are listed on the worksheet.

When you turn off the printer, all the information in the online configuration packets is saved and used when the printer is turned back on. After you change printer configurations, you must resend the format, batch, or graphic to the printer before the changes take effect.

Always include an I, immediately after the left bracket \{ and before the packet identifier (A, B, C, etc.). The I parameter identifies the data stream as a configuration packet.

Include the I parameter with each packet if you are sending them individually. Include it only at the beginning of a data stream if you are sending multiple packets.

This is the syntax to use when you create online configuration packets:

Syntax

Syntax for single packet

You can also add a configuration to non-volatile RAM or specify units for supply, print, margin, and cut positions. If you use the optional parameters with the I packet, any online configuration packets following the split vertical bar (i) must specify distances using the selected units. However, the diagnostic labels display the units in dots, even if you entered them in English or Metrics units.

Syntax \{I, | \}
Example \{I, ;
C, 0, 25, 0, 0, 0 | \}
Adds a configuration to non-volatile RAM and specifies English units. It also uses the default contrast, moves print 0.25 inches closer to the bottom of the supply and does not change the margin adjustment, prints at the default print speed, and uses the default printhead width.

Example $\{\mathrm{I}, \mathrm{O}, \mathrm{U}, \mathrm{N}:\}$
Uploads the printer configuration from nonvolatile RAM and returns the following to the host.

```
A,0,0,0,0,1 !
B,2,0,0,0,0 ;
C,0,0,0,0,0,0 i
D,1,0,2 ;
E,"~123~044~034~124~125~126"," ","~013~010"
F,3,1,0,0,1 |
G,0,65,65
M,R,R,160 !
M,T,R,20 |
M,I,R,320 i
M,D,N,1280 |
M,F,N,640
M,V,R,1280 \
```

The parameters for each packet ($\mathbf{A}-\mathbf{M}$) are displayed. In the first line that begins with M, 8725 is the total volatile memory available, 1345 is the memory used in volatile RAM. 2535 is the total non-volatile memory available, 615 is the memory used in non-volatile RAM. The remaining lines beginning with \mathbf{M} list the buffer sizes in 1/10K for the Receive, Transmit, Image, Downloadable Fonts, Formats, and Scalable Fonts Buffers.

Configuration Syntax Guidelines

When creating a printer configuration packet:

- Follow the "Standard Syntax Guidelines" listed at the beginning of this chapter.
- Begin a packet with the configuration header (I).
- Download multiple configuration packets within one packet or download a single configuration packet.
- Include the first five ANSI codes, at a minimum, in the control characters packet.
- If you change any of the online configuration packets, resend the format packet to the printer, so the configuration changes take effect.
- Make sure the communication settings at the host match those at the printer.

Making Print Adjustments

You can adjust where the printer prints on your supply by adjusting the supply, print, or margin positions. However, keep in mind the following:

- Supply adjustments across the width of your supply, such as the margin position, are based in dots. The printhead has 203 dots per inch.
- Supply adjustments for the length of your supply, such as supply position or print adjustment, are measured in 1/203 of an inch.

Defining the System Setup Packet

Use the system setup packet (A) to select the power up mode, display language, print separators between batches, print a "slashed zero," and select the symbol set.

```
Syntax \{I, A, powup_mode, language, sep_on,slash_zero,
symbol_set \(\mid\}\)
```

A1. A System Setup Packet
A2. powup_mode Online Mode. Enter 0.
A3. language Display Language. Enter 0 (for English).
A4. sep_on Batch Separators. The printer does not print batch separators. Enter 0.

A5. slash_zero Slash Zero. Options:
$0 \quad$ Print a standard zero (default)
1 Print a zero with a slash through it
A6. symbol_set Symbol Set. Use $\mathbf{0}$ for the Internal Symbol Set. For font 50 or TrueType ${ }^{\circledR}$ fonts, use:

1 ANSI
2 Code Page 437 (Latin U.S.)
3 Code Page 850 (Latin 1)
4 Code Page 1250 (Latin 2)
$5 \quad$ Code Page 1251 (Cyrillic)
$6 \quad$ Code Page 1252 (Latin 1)
7 Code Page 1253 (Greek)
8 Code Page 1254 (Turkish)
9 Code Page 1255 (Hebrew)
10 Code Page 1256 (Arabic)
11 Code Page 1257 (Baltic)
12 Code Page 1258 (Vietnamese)
13 DOS Code Page 852 (Latin 2)
14 DOS Code Page 855 (Russian)
15 DOS Code Page 857 (IBM Turkish)
16 DOS Code Page 860 (MS-DOS Portuguese)
19 UNICODE
Note: The CG Triumvirate ${ }^{\text {TM }}$ typefaces support only ANSI and DOS Code Page 437 and 850 Symbol Sets. The scalable font does not support Code Page 1256 (Arabic). The UNICODE code page is for downloaded UNICODE (double-byte) fonts. See Appendix C, "Symbol Sets/Code Pages," for more information.

Example $\quad\{\mathrm{I}, \mathrm{A}, 0,0,0,1,0 \quad \mid\}$
Powers up the printer in the online mode, displays prompts in English, does not print a separator after each batch, prints zeros with slashes through them, and uses the internal symbol set.

Defining the Supply Setup Packet

Use the supply setup packet (B) to select supply type, ribbon, feed mode, supply position, and cut position.

Syntax

B1. B
B2. supply_type
$\{I, B$, supply_type, ph_energy, feed_mode, supply_posn $\mid\}$

Supply Setup Packet
Supply Type. Options:
$0 \quad$ Black mark supply
1 Die Cut supply (default)
2 Non-indexed supply
Note: You must use non-indexed supply in continuous mode. Also, you may need to adjust the print contrast (in the Print Control packet), based on the type of supply you are using.

B3. ph_energy
0 Standard Supplies
1 Special (fax paper)
2 High Energy (linerless and synthetic)
Note: Monarch does not recommend that you print serial bar codes with linerless supplies.

B4. feed_mode Feed Mode. Options:
0 Continuous operation (default)
1 On-demand mode (purchase optional)

Abstract

B5. supply_posn -99-99 in 1/203 inch. 0 is the default. Adjusts the machine to print at the vertical 0,0 point on the supply. This adjustment accounts for mechanical tolerances from machine to machine. The supply position adjustment only needs to be made on the initial machine setup. Adjust the supply position if formats do not start at the 0,0 point on the supply. Increase the supply position to move print up, decrease to move print down on the label. To verify the 0,0 point, print the diagnostic labels. See Chapter 8, "Troubleshooting," for more information. You can't change the supply position while the printer is active. Changing the supply position will affect the print position, dispense position, and backfeed distance. Once the supply position is set, use the print control packet and backfeed control packet to adjust printing and the dispense position.

Example $\quad\{\mathrm{I}, \mathrm{B}, 0,0,1,10 \mid\}$ Indicates black mark and thermal direct stock has been loaded, causes the printer to operate in on-demand mode (purchase optional), and feeds the supply approximately .05 inches up before printing the format on each label (10/203 inches).

Defining the Print Control Packet

Use the print control packet (C) to set the contrast, print, and margin adjustment, print speed, and printhead width.

```
Syntax
\{I, C, contrast, print_adj,margin_adjust,
speed_adj,ph_width | \}
```

C1. C Print Control Packet
C2. contrast $\quad \mathbf{- 2 8 - 4 0 . 0}$ is the default. You may need to adjust this value depending on the type of supplies you are using. For example, linerless supplies require a higher print contrast, but receipt paper requires less contrast.

C3. print_adj $\quad \begin{aligned} & -99-99 \text { in } 1 / 203 \text { inch. } 0 \text { is the default. Adjusts where data } \\ & \\ & \\ & \text { prints vertically on the supply. Increase the print position to } \\ & \text { move print up, decrease to move print down. }\end{aligned}$
C4. margin_adj -99-99 in $1 / 203$ inch. $\mathbf{0}$ is the default. Adjusts where data prints horizontally on the supply. Increase the margin position to move print to the right, decrease to move print to the left. Margin and print position are format adjustments. They will not affect the supply position, dispense position, or backfeed distance.

C5. speed_adj

C6. ph_width Width of the printhead in dots. Use $\mathbf{0}$.

Example $\quad\{\mathrm{I}, \mathrm{C}, 0,-20,-10,0,0 \quad \mid\}$

Uses the default contrast, moves print 0.1 inch closer to the bottom of the supply (20/203 inches) and . 05 inch to the left on the supply (10/203 inches), the printer determines the print speed, and uses the default printhead width.

Defining the Monetary Formatting Packet

The monetary formatting packet (D) selects the monetary symbols to print for a price field. Use the monetary formatting packet to select primary and secondary monetary symbols, and designate the number of digits to appear at the right of a decimal.

Syntax
\{I, D, cur_sym, secondary,decimals | \}
D1. D Monetary Formatting Packet
D2. cur_sym Currency Symbol. Options:
0 No symbol
1 USA (\$, Dollar- default)
2 UK (£, Pound)
3 Japan ($¥$, Yen)
4 Germany (오, Deutsche Mark)
$5 \quad$ France (F, Franc)
6 Spain (P, Peseta)
7 Italy (L., Lira)
8 Sweden (Kr, Krona)
9 Finland (M, Markka)
10 Austria (\%, Shilling)
11 India (Rs, Rupee)
12 Russian (\%, Ruble)
13 Korean (W, Won)
14 Thai (B, Baht)
15 Chinese ($¥$, Yuan)
16 Euro-Dollar ($€$)
Note: To use these symbols, select the internal symbol set.
D3. secondary

D4. decimals Number of digits to the right of the decimal. Options:
0 No digits
1 One digit
2 Two digits (default)
3 Three digits
Example $\{\mathrm{I}, \mathrm{D}, 1,1,2 \mid\}$
Prints the dollar sign, uses a secondary symbol, and places two digits to the right of the decimal.

Defining the Control Characters Packet

Use the control characters packet (E) to change the MPCLII control characters, enable and disable the immediate commands, and change the default terminator character for job requests and ENQ's.

Changes take effect with the first character following the end of header character \} of the configuration packet. Each control character must be unique and cannot appear anywhere else in your packet, except within quotation marks. You can customize the trailer characters to work with your host.

Wait two seconds for the new characters to take effect before sending packets using the new characters.

Use the following syntax for the control characters packet. Notice all but the first parameter are within quotation marks.

E4. "string 2" Terminator for job requests and data uploads. Up to any 3 characters in the 0-255 decimal range. The default is none. Sending "" disables this sequence.

After you change these parameters, all packets, including any future configuration packets, must use the new control characters. Monarch recommends using the tilde and ASCII character code sequence when sending this packet multiple times. Also, set the packet delimiters to characters within the 21 hex - 7E hex range.

You must send the control characters packet to enable the immediate commands. An immediate command will execute immediately, even if it is embedded within quotation marks, and all data following the command in the string will be ignored.

Example \{I, E, "~123~063~034~124~125~126~094" | \}
Changes the parameter separator character from, to ?. The other control characters remain unchanged. It also enables the immediate commands by defining the ${ }^{\wedge}$ symbol as the command identifier.

Resetting Control Characters

You can change the characters in the previous example back to their original settings by downloading this packet:

$$
\text { \{I?E? "~123~044~034~124~125~126~094" | \} }
$$

Notice that the parameter separator is ? in this packet. This is the parameter separator that was set before this packet. Once the packet is received by the printer, the new parameter separator (a comma, in this case) is valid.

Be careful when using this feature. If you forget what the control characters were changed to, print the diagnostic labels. (The labels list the current control characters.) See "Printing Diagnostic Labels," in Chapter 8 for more information.

Using Immediate Commands

Immediate commands affect printer operation as soon as the printer receives them, even if they are included within a packet or used inside quotation marks.

You can use immediate commands to change immediate command or status polling control characters, reset the printer, or cancel and repeat batches.

Enabling Immediate Commands

When the printer is first turned on, these commands are not available. To use these commands, you must first send the control characters packet and define the immediate command control character. The immediate command control character is saved in non-volatile RAM and therefore not lost after you turn off the printer. Once the immediate command control character is defined, the immediate commands are enabled.

Sending Immediate Commands

Immediate commands consist of a three- or four-character sequence you can send in a packet or embed in your application. Each command must be sent separately.

Syntax control character_immediate command
The printer can accept only one immediate command at a time. Sending a command before the previous one is completed can result in an error.

Example $\quad{ }^{\wedge} \mathrm{CB}$

Immediately cancels the batch currently printing unless an error exists in the printer. This example assumes that the defined immediate command control character is the caret (${ }^{\wedge}$).

The table represents the defined immediate command control character as ${ }^{\wedge}$ and the defined status polling control character as d. You may define these characters to suit your needs.

To use the immediate command control character or the status polling character within your data, use the tilde sequence.

Command	Parameter
${ }^{\wedge} \mathrm{CA}$	Cancels all the batches in the queue unless an error exists on the printer.
${ }^{\wedge} \mathrm{CB}$	Cancels only the current batch being printed unless an error exists.
$\begin{aligned} & \text { ^DD or } \\ & { }^{\text {ADCd }} \end{aligned}$	Disables the MPCL data escape character (the tilde) and inhibits MPCL from acting on ANY data escape sequence from the host. Sets the MPCL data escape character to the ASCII value given by the d parameter. The value can be any ASCII character.
^EA	Aborts an error condition. This command is the same as the left (4) button to clear an error. May need to be sent multiple times. Use ${ }^{\wedge}$ RB to reprint batch. CAUTION: Command causes the current batch to stop and the condition that caused the error to remain uncorrected.
^ER	Resets the error. This command is the same as pressing (i) to acknowledge an error. Normal operation will resume.
${ }^{\wedge} \mathrm{FD}$	Feeds a label when printer is idle. Simulates the operation of pressing $(\underset{i}{6})$ and dispenses the next label if printer is in the on-demand mode (purchase optional). Note: Printer ignores this command if printing.
${ }^{\wedge} \mathrm{ID}$ or ${ }^{\text {^ICd }}$	Disables the Immediate Command feature by turning off the Immediate Command escape character. Sets the Immediate Command escape character to the ASCII value given by the d parameter. The value can be any ASCII character.
${ }^{\wedge} \mathrm{MC}$	Returns the customer ID or RPQ version to the host. (00-99)
${ }^{\wedge} \mathrm{MD}$	Returns the printhead dot density to the host. $00=203 \mathrm{dpi} 01=300 \mathrm{dpi}$
${ }^{\wedge} \mathrm{MF}$	Uploads the MIF file to the host.
^MI	Returns the customer ID or RPQ revision level to the host. (00-99)
${ }^{\wedge} \mathrm{MM}$	Returns the model number to the host. $22=9460$
${ }^{\wedge} \mathrm{MP}$	Returns the prototype number to the host. (00-99)
${ }^{\wedge} \mathrm{MR}$	Returns the revision number to the host. (00-99)
${ }^{\wedge} \mathrm{MS}$	Returns the flash file system information (fonts
${ }^{\wedge} \mathrm{MV}$	Returns the version number to the host. (00-99)
${ }^{\wedge} \mathrm{PR}$	Resets the printer. This command takes five seconds to complete and then the printer is ready to receive data. It has the same effect as turning off and then turning on the printer. Note: Command should be used only when the printer is not printing.
${ }^{\wedge}$ RB	Repeats the last printed batch, printing the same number of labels as specified in the original batch. This command does not work if using batch separators. Note: Printer ignores this command if printing.
^RS	Resynchronizes supply when supply roll is changed. Note: Printer ignores this command if printing.
$\begin{aligned} & \text { ^nD or } \\ & \text { ^SCd } \end{aligned}$	Disables the status polling feature by turning off the status polling control character. Sets the status polling control character to the ASCII value given by the \mathbf{d} parameter. The value of \mathbf{d} can be any ASCII character.
^TP	Prints a diagnostic label set. Note: Printer ignores this command if printing

Defining the Communication Settings Packet

Use the communication settings packet (F) to set the baud rate, word length, stop bits, parity, and flow control for serial communications. Changing the communication settings takes approximately two seconds. Communications sent during this interval will be lost. Make sure the host communication values match the values on the printer.
$\begin{array}{ll}\text { Syntax } & \{\mathrm{I}, \mathrm{F}, \text { baud, word_length, stop_bits, parity, } \\ \text { flow_control }\}\end{array}$
F1. F Communication Settings Packet
F2. baud Baud Rate. Options:

$\mathbf{0}$	1200	$\mathbf{3}$	9600 (default)
$\mathbf{1}$	2400	$\mathbf{4}$	19200
$\mathbf{2}$	4800	$\mathbf{5}$	38400

Note: With these rates, the printer can both communicate and print. With higher rates, it cannot print.

F3. word_length Word Length. Options:
$0 \quad$ 7-bit word length (odd or even parity only)
1 8-bit word length (default)
F4. stop_bits
Stop Bits. Options:
$0 \quad$ 1-stop bit (default)
1 2-stop bits
F5. parity Parity. Options:
$0 \quad$ None (default)
1 ODD parity
2 EVEN parity
F6. flow_control Flow Control. Options:

$\mathbf{0}$	None	$\mathbf{2}$	RTS/CTS
$\mathbf{1}$	DTR (default)	$\mathbf{3}$	XON/XOFF

Note: If you use the DOS COPY command to download your formats, set "Flow Control" to DTR (not XON/XOFF).

Example $\{\mathrm{I}, \mathrm{F}, 3,1,0,0,1$: $\}$
Uses 9600 baud, an 8-bit word length, one stop bit, no parity, and the DTR mode.

Defining the Backfeed Control Packet

Use the backfeed control packet (G) to enable or disable the backfeed option, set the dispense position and the backfeed distance. Backfeed works by advancing each printed label to the desired dispense position. Once that label is removed, the next label to be printed is backed up underneath the printhead. In continuous mode, only the last label in the batch is advanced to the dispense position. You may need to adjust the dispense position to allow labels to be removed, die cut labels to be removed easily, or to prevent them from falling off.

Do not use backfeed with supplies less than 0.75 inches.
The dispense position and backfeed distance are optional parameters and do not have to be specified. However, they allow for greater precision when positioning the supply. You can't change the backfeed distance while the printer is active.

Syntax
G1. G Backfeed Control Packet
G2. action Action. Options:
0 disable backfeed (default)
1 enable backfeed (use on any printer without a knife)
G3. dis_pos Dispense Position. Adjusts the stopping point of the label. $\mathbf{0}$ or 10-200 dots (default 65 dots).

G4. bkfd_dis Backfeed Distance. Amount to move label backwards. $\mathbf{0}$ or 10-200 dots (default 65 dots). Cannot be greater than the dispense position.
The backfeed distance should equal the dispense position. An exception is if you are tearing instead of peeling. Then, the backfeed distance must be 40 dots (. 150 inches) less than the dispense position. However, you will have a 30 dot non-print zone on your supply. The 30-dot difference accounts for improper tearing of butt cut supplies, because you do not want any exposed adhesive under the printhead.

Example $\{\mathrm{I}, \mathrm{G}, 1,50,10$ | \}

Enables backfeed and sets the dispense position to 0.25 inches (50/203) and the backfeed distance to 0.05 inches (10/203).

Special Considerations When Using Backfeed

Make a note of the following items:

- Be careful when tearing supplies, because the adhesive can adhere to the printhead or platen roller.
- Backfeed affects each label in the on-demand mode (purchase optional) or the first and last label of the batch in continuous mode.
- When backfeed is enabled and multiple batches are sent, the printer may not backfeed between each batch.
- Backfeed should only be used when you need to advance labels to the desired dispense point.
- Backfeed does not interfere with the supply, print, or margin positions you have set.
- If the supply inter-label gap is not between .07 inch - 15 inch (14-30 dots), you must adjust the dispense position and backfeed distance accordingly.

See the following graphic for a representation of the following adjustments: dispense position, backfeed distance, supply position, print position, and margin position.

Contact Technical Support if you have problems adjusting where the format prints on the supply.

Defining the Memory Configuration Packet

Use the memory configuration packet (M) to customize the size of your printer's buffers, which gives you greater flexibility in your formats.

Memory must be allocated in $1 / 2 \mathrm{~K}$ increments. The memory configuration packet does not accept decimals, so enter whole numbers. Multiply the amount to reallocate (in K) by 10. For example,

To reallocate (in K)	Enter this amount
1	10
1.5	15
2	20
2.5	25
153	1530
229.5	2295

Each buffer's allocated memory remains in effect until that buffer is reallocated. For this reason, you may want to reallocate all the buffers when reallocating any buffer. If you reallocate more memory than you have available, you will receive an error.

Syntax \{I, m,buffer, device,buffer_size ! \}
M1. M Memory Configuration Packet
M2. buffer Buffer type:
D Downloadable Fonts
F Format
I Image
R Receive
T Transmit
V Scalable (vector) fonts
M3. device Storage type:
Use R (volatile RAM)
Note: You cannot reallocate flash memory.

M4. buffer size	Buffer size in $1 / 10 \mathrm{~K}$ ranges. Options: 5-40 Transmit (10 is the default) 20-160 Receive (40 is the default) 160-1142 Image (389 is the default) 160-1280 Format (160 is the default) 640-1280 Downloadable Fonts (640 is the default) 10-1280 Scalable Fonts (640 is the default)

Note: For the scalable font buffer, specify 10 if you do not use the buffer. When using the buffer, specify a minimum of 40 .

The larger the number you specify for the image buffer, the longer your formats can be. As a rule of thumb, divide the value you select by 100 , and round up to the next whole number. That number will be the length in inches.

Example $\{\mathrm{I}, \mathrm{M}, \mathrm{I}, \mathrm{R}, 1530$ | \}
Stores the image buffer in volatile RAM and allocates 153 K for it.

Checking Current Buffer Sizes

Send a configuration upload packet to check the sizes of your current buffers. See "Configuration Packet Header" for more information. After you check your current buffer sizes you can begin reallocating memory.

If you want to increase your image buffer and you will not be using scalable fonts, add that memory into your image buffer.

Example

$\{I, M, R, R, 20$	Receive buffer	$2 K$
$M, T, R, 10$	Transmit buffer	1 K
$M, D, N, 80$	Downloadable fonts	8 K
$M, V, R, 160$	Scalable fonts buffer	16 K
$M, I, N, 3200$	Image buffer	320 K

Make sure memory is available before adding memory to a buffer. In the above example, if the image buffer ($\mathrm{M}, \mathrm{I}, \mathrm{N}, 3200$) was defined before the downloadable fonts and scalable fonts buffers (M,D,N,80 and M,V,R,160) were defined, an error would have occurred.

About Memory Buffers

Transmit Buffer	Used to send ENQ, job, and upload responses. This buffer must be allocated as volatile (R) RAM.
Receive Buffer	Used to save data received from the host before it is processed by the printer. Changing this buffer size affects the amount of data the printer can receive without using flow control. This buffer must be allocated as volatile (R) RAM.
Image Buffer	Used to image the current format. Use the formula below to calculate the required image buffer size.
$\quad 10 \mathrm{~K}$ x Length	

Format Buffer	Used to store formats, batch data, and graphics. Use the following formula to calculate the required format buffer size:		
Linecount $\times 50 / 1024$		\quad	Linecount is the number of lines in your
:---			
format packet including the format header			
and all the options.			

Buffer Worksheet

Make copies of this page to use as a buffer worksheet.

Buffer Allocation Considerations

Keep these items in mind when allocating memory.

- Do not allocate more memory than what is available.
- Free memory from one buffer before you add it to another buffer.
- Reallocate all the buffers if you need to reallocate any buffer.

- Send all buffer (re)allocations in one packet. The printer evaluates each individual buffer allocation separately. If one buffer allocation is invalid, the entire packet is invalid. For example, if you send
\{I, M, R, N, 20 ।
M, T, N, 60 :
the printer ignores the entire packet, because the second line allocates 6 K for the transmit buffer, and 4 K is the maximum for that buffer. If you define a buffer size that exceeds the maximum value, an error occurs. However, no information is lost.
- Whenever the printer accepts a memory configuration packet, it takes effect immediately, causing a printer reset. Any information contained in the buffers is lost. Resend your formats, batches, graphics, or fonts to the printer.
- If you remap your image buffer, make sure the length and width specified in your format header are not too large for the current image buffer. In other words, if you remap for a 2×6 inch label, you cannot print a 2×8 inch label without receiving an error, until you change your format header or increase your image buffer.

Memory Considerations with Downloaded TrueType Fonts

- The size of the TrueType font file, in bytes, is the minimum amount of memory you must have available in the downloadable fonts buffer.
- The scalable (vector) fonts buffer is used to image the downloaded fonts (TrueType). If you are using several downloaded TrueType fonts, you may need 100K or more in this buffer. The printer does not print the fonts if there is not enough memory in the scalable (vector) fonts buffer.
- To use large point sizes (greater than 60 point), you must reconfigure memory and increase the size of the scalable (vector) fonts buffer.

Clearing Packets from Memory

You may want to remove packets from the printer to increase memory storage capacity or if the formats/fonts are no longer needed. In some cases, turning the printer off may clear the packets from memory. If not, send a format clear packet.

Syntax	\{header, packet\#,action, device \| \}
1. header	Identifies the packet. Options:
	A Check Digit Scheme
	F Format
	G Graphic
	W Font
2. packet\#	Identification number of the packet to clear (1-999) or font number (0-9999). 0 is for all fonts.
3. action	Enter \mathbf{C} to clear the packet.
4. device	Storage device. Options:
	N Nonvolatile RAM
	R Volatile RAM
	F Flash Memory
Example	\{ F, 1, C, R \| \}
Clears For	\#1 from volatile RAM.

Using the Font Packet

You can use a font packet to add or clear downloaded fonts from memory, upload your font buffer, font data, or the cell size information for a particular font. The font packet is useful when you are downloading fonts. If you are using downloaded fonts, the font number and the number of bytes each downloaded font uses is listed.

This packet does not list the number of bytes the standard printer fonts use.

If you are creating fonts, you need to have font data included with this packet. Software is available to download from our Web site to create the font data and packet.

Syntax	$\{\mathrm{W}$, font\#, action, device, data_length, data_rec ord $\}$
W1. W	Writable Font Header.
W2. font\#	The font identifier from $\mathbf{0}$ - 32000. Use $\mathbf{0}$ to specify all fonts.
W3. action	Action. Options:

A Adds the specified font.
C Clears all or specified fonts, except ones in ROM.
H Uploads font size information.
M Uploads font memory usage information.
W4. device Device. Options:
R Volatile RAM
Z All devices (use for upload).
W5. data_length The length of the font data. The range is $\mathbf{6 8} \mathbf{- 1 6 3 8 4}$. (optional)

If you are creating fonts, you need to have font data included with this packet.

W6. data_ Multiple data records define the font. The first character is record
(optional) either an \mathbf{H} (hex) or an \mathbf{R} (run-length), referring to the algorithm. The rest of the record is up to 2710 characters of font data in double quotes. Separate the algorthm and the data with a comma, and end the record with i.

Selects all fonts and checks the memory usage in RAM. The printer returns the following to the host:
$\{W, 0, M, R$;
Number of bytes free, Number of bytes used ; \}

Example $\{\mathrm{W}, \mathrm{O}, \mathrm{H}, \mathrm{z} \mathrm{\mid} \mathrm{\}}$

Selects all fonts and uploads the font size information for any downloaded fonts.

The printer returns the following to the host:

The CG Triumvirate ${ }^{\text {TM }}$ typefaces are trademarks of Monotype Imaging, Inc.

Spacing	Monospaced (0) or proportional (1).
Type	Bitmapped (0) or scalable (1).
Baseline	Bottom of the font.
Cell Width	Horizontal number of dots to contain the widest character.
Cell Height	Vertical number of dots to contain the tallest character.
Nominal Width	Average width for lower-case letters.
Nominal Height	Average height for lower-case letters.
Inter-Character Gap	Default spacing between characters in monospaced fonts.
Printhead Density	Displays whether a 203 (0) dpi or 300 (1) dpi printhead is used.
Uploading Format Header Information	
You can upload format header information from the formats in memory to check the supply length and width for each format.	
Syntax	ader, format\#, action, device \| \}
F1.header For	at Header
F2. format\# Form	at number from 0-999. 0 is for all formats in memory.
F3. action Act	n. Options: Adds the specified format Clears the specified format Uploads format header information
F4. device Devi	e. Options: Volatile RAM All devices (use for upload)

Example $\{\mathrm{F}, \mathrm{O}, \mathrm{H}, \mathrm{Z} \mid\}$
Selects all formats in memory and returns the following:

Example	$\{\mathrm{F}, 0, \mathrm{H}, \mathrm{Z}$
	Fmt_1,406,406
	Fmt_10,324,406
	Fmt_15,812, 812
	Fmt_20,305,609
	Fmt_25,1218,406 $\}$

Displays the format number, supply length and supply width (in dots) for each format in memory.

Example $\{\mathrm{F}, \mathrm{I}, \mathrm{H}, \mathrm{Z} \mid\}$
Selects format1 and returns the following to the host:

```
{F,1,H,Z |
Fmt_1,406,406 { }
```

Displays the supply length and supply width (in dots) for format1.

DEFINING FIELDS

This chapter provides a reference for defining

- the format header
- text and constant text
- bar code fields
- line and box fields.

Defining the Format Header

A Format Header begins a format file.

```
Syntax \{F,format\#, action, device, measure, length,
width,"name" |
```

F1. F Format Header.
F2. format\# Unique number from 0-999 to identify the format.
F3. action Action. Enter A to add the format to the printer.
F4. device Format storage device. Options:
R RAM
F Flash Memory
F5. measure Unit of measure. Options:
E English, measured in 1/100 inches
M Metric, measured in $1 / 10 \mathrm{~mm}$
G Graphic, measured in dots
F6. length Supply length, top to bottom, in selected units.
English 0-1200
Metric 0-3045
Dots 0-2436
F7. width Supply width, from left to right, in selected units.
English 50-205
Metric 127-521
Dots 102-416
F8. "name" Format name (optional), 0-8 characters, enclose within quotation marks.

Example $\{\mathrm{F}, 1, \mathrm{~A}, \mathrm{R}, \mathrm{E}, 300,100$, TEXTILES" |
Format 1 ("TEXTILES") uses a three inch long by one inch wide label.

3-2 Defining Fields

Defining Text Fields

Create a separate definition for each text field. If text falls on two lines, each line of text requires a separate definition.

Syntax T,field\#,\# of char,fix/var,row,column, gap,font,hgt mag,wid mag,color,alignment, char rot,field rot,sym set ;

T1. T
T2. field\#
T3. \# of char
T4. fix/var

T5. row

Text Field.
Unique number from 0-999 to identify this field.
Maximum number of printed characters (0-2710) in the field.
Fixed or variable length field. Options:
F Fixed length
V Variable length
For monospaced fonts, distance from bottom of print area to the pivot point. The pivot point varies depending on how text is justified.

For proportionally spaced fonts, distance from bottom of print area to baseline of characters in field.

English	0-1200
Metric	$\mathbf{0}-\mathbf{3 0 4 5}$
Dot	$\mathbf{0 - 2 4 3 6}$

T6. column Distance from the left edge of the print area to the pivot point to find the column location.

English	0-189
Metric	0-479
Dots	0-383

T7. gap Number of dots between characters (203 dots per inch). Range: 0-99.

Note: For monospaced fonts, the additional spacing is added to the existing inter-character gap. This is also true for proportionally spaced fonts, but remember that the inter-character gap varies with character combinations.

Any number other than $\mathbf{0}$ or the default number affects your field width. Default spacing:

Standard	$\mathbf{3}$ dots
Reduced	$\mathbf{1}$ dot
Bold	$\mathbf{3}$ dots
OCRA-like	$\mathbf{3}$ dots
HR1	$\mathbf{3}$ dots
HR2	$\mathbf{2}$ dots
EFF Swiss Bold \& other fonts	varies with each letter

HR1 and HR2 are only used with the UPC bar code family and must be numeric.

T8. font Style of font. Options:

$\mathbf{1}$	Standard	$\mathbf{6}$	HR2
$\mathbf{2}$	Reduced	10	CG Triumvirate ${ }^{\text {TM }}$ Typeface Bold
$\mathbf{3}$	Bold	$\mathbf{1 1}$	CG Triumvirate ${ }^{T M}$ Typeface
$\mathbf{4}$	OCRA-like	$\mathbf{5 0}$	EFF Swiss Bold (scalable)
$\mathbf{5}$	HR1		

Or a valid downloaded font selector number. Fonts 5 and 6 are for numeric data only.
The CG Triumvirate ${ }^{T M}$ typefaces support only the ANSI and DOS Code Page 437 and 850 Symbol Sets. The scalable font does not support Code Page 1256 (Arabic). See Appendix C, "Symbol Sets/Code Pages," for more information.

3-4 Defining Fields

T9. hgt mag Height magnifier, $\mathbf{1} 7$ (times- for bitmapped fonts). With TrueType/Scalable fonts, use 4-255, for the font's point size. Use a magnifier of 1 with proportionally spaced fonts, because characters lose smoothness at higher magnifications. See Appendix B, "Fonts," for more information about fonts.
T10. wid mag Width magnifier, 1-7 (times). With TrueType/Scalable fonts, use 4-255, for the font's point size. Proportionally spaced fonts do not have a set width. To estimate the size of your field, use the letter "W" for the widest field or an "L" for an average width field. Find your selected font and the desired width in Appendix B, "Fonts."
T11. color There are two types of field color overlay attributes: Transparent The overlay field (text or constant text) does not block out (or "erase") existing fields.
Opaque The overlay field blocks out (or "erases") existing fields.
Options for standard printer fonts:
B Opaque, Normal, Black, Normal
D/R/W Opaque, Normal, White, Normal
$0 \quad$ Transparent, Normal, Black, Normal
Options for scalable fonts:

A/N	Opaque, Normal, Black, Bold
B/O	Opaque, Normal, Black, Normal
E/S	Opaque, Italics, Black, Bold
F/T	Opaque, Italics, Black, Normal

Note: Solid black print should not exceed 30% on a given square inch of the label, or the printhead life may be decreased.
Field placement in the packet is an important consideration when using field color attributes. If a line field is defined before the overlay (text or constant text) field, the line field is blocked out by the overlay field, depending on the overlay field's color attribute. If a line field is defined after the overlay field, the line field is not blocked out by the overlay field, regardless of the overlay field's color attribute.

T12. alignment Options:
L Align on left side of field.
C Center text within field (monospaced fonts only)
R Align on right side of field (monospaced fonts only)
B Align at midpoint of field
E Align at endpoint of the field
Use L, B, or E for any font.
T13. char rot Character rotation. The field or supply does not rotate, only the characters do. Options:
0 Top of character points to top of field
1 Top of character points to left of field
2 Top of character points to bottom of field
3 Top of character points to right of field

T14. field rot Field rotation. Field rotation rotates the whole field, not just the characters. Rotation is affected by the pivot point, which varies depending on how text is justified. Lower left corner of field is the pivot point. Options:
0 Top of field points to top of supply
1 Top of field points to left of supply
2 Top of field points to bottom of supply
3 Top of field points to right of supply

3-6 Defining Fields

T15. sym set Symbol set. Use $\mathbf{0}$ for the Internal Symbol Set. For scalable fonts, use:

$\mathbf{1}$	ANSI Symbol Set
$\mathbf{1 0 2}$	UNICODE (user input) for particular mapping
$\mathbf{4 3 7}$	DOS Code Page 437 (Domestic)
$\mathbf{8 5 0}$	DOS Code Page 850 (International)
$\mathbf{8 5 2}$	DOS Code Page 852 (Latin 2)
$\mathbf{8 5 5}$	DOS Code Page 855 (Russian)
$\mathbf{8 5 7}$	DOS Code Page 857 (IBM Turkish)
$\mathbf{8 6 0}$	DOS Code Page 860 (MS-DOS Portuguese)
$\mathbf{1 2 5 0}$	Code Page 1250 (Latin 2)
$\mathbf{1 2 5 1}$	Code Page 1251 (Cyrillic)
$\mathbf{1 2 5 2}$	Code Page 1252 (Latin 1)
$\mathbf{1 2 5 3}$	Code Page 1253 (Greek)
$\mathbf{1 2 5 4}$	Code Page 1254 (Turkish)
$\mathbf{1 2 5 5}$	Code Page 1255 (Hebrew)
$\mathbf{1 2 5 6}$	Code Page 1256 (Arabic)
$\mathbf{1 2 5 7}$	Code Page 1257 (Baltic)
$\mathbf{1 2 5 8}$	Code Page 1258 (Vietnam)

The CG Triumvirate ${ }^{T M}$ typefaces support only ANSI and DOS Code Page 437 and 850 Symbol Sets. The scalable font does not support Code Page 1256 (Arabic). The UNICODE code page is for downloaded UNICODE (double-byte) fonts. See Appendix C, "Symbol Sets/Code Pages," for more information.

Example $\quad T, 2,10, \mathrm{~V}, 250,80,0,1,1,1, B, C, 0,0,0 \quad$ i
Defines a text field (field \#2) with a variable length of up to 10 characters. The field begins at row 250 , column 80 . There is no additional gap between characters, and the Standard font is used without any additional magnification. The printing is black on white and centered. No field or character rotation is used. The internal symbol set is used.

Defining Bar Code Fields

Each bar code field requires a separate definition.

Syntax

B1. B
B2. field\#
B3. \# of char

B,field\#,\# of char,fix/var,row, column, font, density,height, text, alignment, field rot \mid

Bar Code Field.
Unique number from 0-999 to identify this field.
Maximum number of characters. If the bar code uses a check digit, allow an extra character for the check digit. The actual maximum number of characters is limited by the size of the label and bar code density. Range: 0-2710.

For Quick Response bar codes, this number includes header information. The maximum depends on the type of characters entered for the batch data and differs for the two models of the bar code.

Data Type	Model 1	Model 2
Numeric Data	1167	2710
Alphanumeric data	707	2710
8-byte data	486	2710
Kanji data	299	1817

Note: The maximum number of characters depends on the selected level of error correction. As you increase the error correction level, the maximum number of characters decreases.

3-8 Defining Fields

B4. fix/var Fixed (F) or variable (V) length field.

Bar Code	Number of Characters	Fixed or Variable
UPCA	12	F
UPCA+2	14	F
UPCA+5	17	F
UPCA+Price CD	12	F
UPCE	7	F
UPCE+2	9	F
UPCE+5	12	F
EAN8	8	F
EAN8+2	10	F
EAN8+5	13	F
EAN13	13	F
EAN13+2	15	F
EAN13+5	18	F
EAN13+Price CD	13	F
Interleaved 2 of 5 or Interleaved I 2 of 5 with Barrier Bar	0-2710	F or V
Code 39 (w/ or w/o CD) or MOD43	0-2710	F or V
Codabar	0-2710	F or V
Code 128	0-2710	F or V
Code 93	0-2710	V
Code 16K	0-2710	V
MSI	0-14	F or V
MaxiCode	15-99	For V
PDF417	0-2710	F or V
POSTNET	0-11	F

Distance from bottom of the print area to the pivot point of the field. The pivot point varies, depending on how the field is justified. Pivot points:

Left/Center/Right-Justified Fields

Balanced Fields

End-Justified Fields

Remember to include text or numbers that may appear with the bar code for the row measurement.

English	$\mathbf{0}-\mathbf{1 2 0 0}$
Metric	$\mathbf{0}-\mathbf{3 0 4 5}$
Dots	$\mathbf{0 - 2 4 3 6}$

B6. column
Distance from the lower left edge of the print area to the pivot point.

English 0-189
Metric 0-479
Dots 0-383

SAHPLE

Note: Allow a minimum of $\mathbf{1 / 1 0}$ inch between the scan edge of bar code and label edges or other data. Two-dimensional barcodes cannot be scanned (MaxiCode, PDF417, Code 16K and POSTNET).

B7. font	Ba 1 2 2 3 4 5 6 7 7 8 9 10 11 12 13 14	code. Options: UPCA UPCE 0 Interleaved 2 of 5 Code 39 (no check digit) Codabar EAN8 EAN13 Code 128 MSI UPCA +2 UPCA +5 UPCE +2 UPCE +5 EAN8 +2	$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 21 \\ & 22 \\ & 23 \\ & 31 \\ & 32 \\ & 33 \\ & 36 \\ & 40 \\ & \\ & 41 \\ & 44 \\ & 50 \end{aligned}$	EAN8 +5 EAN13 + 2 EAN13 +5 LAC POSTNET Code 93 Code 16K PDF417 MaxiCode Quick Response Code 39 (MOD 43 check digit) UPCA \& Price CD EAN13 \& Price CD Interleaved 2 of 5 with Barrier Bar
B8. density	Bar code density. Use $\mathbf{0}$ for Quick Response bar codes. Use the following table for other bar codes.			
	Note: If the field contains an 11-digit UPC bar code, the printer automatically zero-suppresses it into a 6-digit UPCE bar code.			

Bar code Type	Density Selector	Density (\% or cpi)	Narrow Element (dots/mils)	Narrow to Wide Ratio	Data Length	Appearance Codes Available	Char Set
$\begin{aligned} & \text { UPCA +2/+5 } \\ & \text { Price CD } \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 76 \% \\ & 114 \% \end{aligned}$	$\begin{aligned} & 2 / 9.9 \\ & 3 / 14.8 \end{aligned}$	N/A	$\begin{aligned} & 11 \text { or } 12 \\ & 14 / 17 \end{aligned}$	$1,5,6,7$ or 8	0 to 9
$\begin{aligned} & \text { UPCE } \\ & +2 /+5 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 76 \% \\ & 114 \% \end{aligned}$	$\begin{aligned} & 2 / 9.9 \\ & 3 / 14.8 \end{aligned}$	N/A	$\begin{aligned} & 6 \text { or } 7 \\ & 9 / 12 \end{aligned}$	$1,5,6,7$ or 8	0 to 9
$\begin{aligned} & \text { EAN8 } \\ & +2 /+5 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 76 \% \\ & 114 \% \end{aligned}$	$\begin{aligned} & 2 / 9.9 \\ & 3 / 14.8 \end{aligned}$	N/A	$\begin{aligned} & 7 \text { or } 8 \\ & 10 / 13 \end{aligned}$	1, 5, 6,7 or 8	0 to 9
$\begin{aligned} & \text { EAN13+2/+5 } \\ & \text { Price CD } \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{array}{\|l\|} \hline 76 \% \\ 114 \% \end{array}$	$\begin{aligned} & 2 / 9.9 \\ & 3 / 14.8 \end{aligned}$	N/A	$\begin{aligned} & 12 \text { or } 13 \\ & 15 / 18 \end{aligned}$	1, 5, 6,7 or 8	0 to 9
Interleaved 2 of 5 or I2of5 with Barrier Bar	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \\ & 10 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	1.1 2.1 3.2 4.2 5.6 6.3 7.5 8.8 9.6 11.2 11.0 12.7 14.5	$\begin{aligned} & \hline 21 / 103.4 \\ & 12 / 59.1 \\ & 7 / 34.5 \\ & 6 / 29.6 \\ & 4 / 19.7 \\ & 4 / 19.7 \\ & \\ & 3 / 14.8 \\ & 3 / 14.8 \\ & 3 / 14.8 \\ & 2 / 9.9 \\ & 2 / 9.9 \\ & 2 / 9.9 \\ & \\ & 2 / 9.9 \end{aligned}$	$1: 3.0$ $1: 2.5$ $1: 3.0$ $1: 2.5$ $1: 3.0$ $1: 2.5$ $1: 3.0$ $1: 2.3$ $1: 2.0$ $1: 3.0$ $1: 3.0$ $1: 2.5$ $1: 2.0$	0 to 2710	8	0 to 9
(Code 39 or MOD43 (Extended Code 39)	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 6 \\ & 7 \\ & 11 \\ & 12 \\ & 12 \\ & 20 \end{aligned}$	14.5 1.7 3.5 4.2 6.3 7.0 3.9 12.7 3.0	$\begin{aligned} & 10 / 49.3 \\ & 8 / 39.4 \\ & 4 / 19.7 \\ & 3 / 14.8 \\ & 2 / 9.9 \\ & 2 / 9.9 \\ & 4 / 19.7 \\ & 1 / 4.9 \\ & 5 / 24.6 \end{aligned}$	$1: 2.5$ $1: 2.5$ $1: 2.5$ $1: 3.0$ $1: 3.0$ $1: 2.5$ $1: 2.0$ $1: 3.0$ $1: 2.2$	0 to 2710	8	$\begin{aligned} & \text { SPACE } \\ & \$ \%^{*}+-. / \\ & 0 \text { to } 9 \\ & \text { A to Z } \end{aligned}$
Codabar (NW7)	$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 3.0 \\ & 4.6 \\ & 5.1 \\ & 8.4 \\ & 9.2 \\ & 10.1 \end{aligned}$	$\begin{aligned} & \hline 8 / 39.4 \\ & 6 / 29.6 \\ & 4 / 19.7 \\ & 4 / 19.7 \\ & 2 / 9.9 \\ & 2 / 9.9 \\ & 2 / 9.9 \end{aligned}$	$\begin{aligned} & 1: 3.0 \\ & 1: 2.5 \\ & 1: 2.5 \\ & 1: 2.0 \\ & 1: 3.0 \\ & 1: 2.5 \\ & 1: 2.0 \end{aligned}$	0 to 26	8	\$+-./ 0 to 9 a to d
Code 128 or Code 16 K	20 4 6 8	$\begin{aligned} & 3.5 / 7.0 \\ & 4.4 / 8.7 \\ & 5.8 / 11.7 \\ & 8.7 / 11.5 \end{aligned}$	$\begin{aligned} & 5 / 24.6 \\ & 4 / 19.7 \\ & 3 / 14.8 \\ & 2 / 9.9 \end{aligned}$	N/A	0 to 2710	8	00H to 7FH

Note: The start (*) and stop (+) characters are automatically added for Code 39. Code 39, density 12, produces a one-dot narrow bar. This density is intended for special U.S.P.S. ACT-tag applications only.

3-12 Defining Fields

Bar code Type	Density Selector	Density (\% or cpi)	Narrow Element (dots/mils)	Narrow to Wide Ratio	Data Length	Appearance Codes Available	Char Set
CODE 93	3	3.7	$6 / 29.6$	$\mathrm{~N} / \mathrm{A}$	0 to 2710	8	00 H to $\mathbf{4}$
	5	4.5	$5 / 24.6$				
	7	5 FH					
	10	7.5	$4 / 19.7$				
MSI	4	11.2	$2 / 9.8$				
	5	5.2	$4 / 19.7$	$1: 2.0$	0 to 14	8	to 9
	7	7.2	$3 / 14.8$	$1: 2.0$			

Bar code Type	Density Selector	Density (\% or cpi)	Narrow Element (dots/mils)	Narrow to Wide Ratio	Data Length	Appearance Codes Available	Char Set
POSTNET	0 (fixed at 4.3 cpi)	$24 / 118.2$	$10 / 49.3$	$4 / 19.7(5$ dot gap)	$0,5,6,9$ or 11	8	0 to 9
MaxiCode	7	N/A	N/A	N/A	99	8	00 H to
FFH							

Bar code Type	Density Selector	Element Width (dot/mils)	Row Height (dots/mils)	Aspect Ratio	Data Length	Appearance Codes Available	Char Set
PDF417	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 2 / 9.8 \\ & 2 / 9.8 \\ & 2 / 9.8 \\ & 3 / 14.8 \\ & 3 / 14.8 \\ & 3 / 14.8 \\ & 4 / 19.7 \\ & 4 / 19.7 \\ & 4 / 19.7 \end{aligned}$	2/9.8 4/19.7 6/29.6 3/14.8 6/29.6 9/44.3 4/19.7 8/39.4 12/59.1	$\begin{aligned} & 1: 1 \\ & 1: 2 \\ & 1: 3 \\ & 1: 1 \\ & 1: 2 \\ & 1: 3 \\ & 1: 1 \\ & 1: 2 \\ & 1: 3 \end{aligned}$	0 to 2709	8	$\begin{aligned} & \mathrm{OOH} \text { to } \\ & \text { FFH } \end{aligned}$

Note: Values in bold indicate the default.

B9. height	Bar code height, in $1 / 100$ inches, $1 / 10 \mathrm{~mm}$, or dots. Minimum values: English Metric Dots
	For Quick Reference bar codes, the value you enter is the
symbol's maximum height. Small bar codes may not be	
scannable.	

3-14 Defining Fields

Defining Constant Text Fields

A constant text field is a set of fixed characters that prints on all labels. Define each constant text field separately. This field is not assigned a field number, but is counted as a field (keep this in mind, as the printer allows a maximum of 200 fields per format). The characters in this field cannot be changed by batch data. Field options do not apply to constant text fields.

Determine the height and the maximum width of the characters, using the tables in Appendix B, "Fonts." If you're using proportionally spaced fonts, use the average size of the characters. Mark the pivot point of your field. This will vary, depending on how your field is justified.

Syntax	C,row, column, gap, font, hgt mag, wid mag, color, alignment, char rot, field rot,"fixed char", sym set \|
C1. C	Constant Text Field.
C2. row	For monospaced fonts, distance from bottom of print area to the pivot point. For proportionally spaced fonts, distance from bottom of print area to baseline of characters in the field. (Bottom exits the printer first.)
C3. column	Distance from the lower left edge of the print area to the pivot point.
C4. gap	Number of dots between characters (203 dots per inch). Range: 0-99. Any number other than $\mathbf{0}$ or the default number affects your field width. Default spacing:
	Standard $\mathbf{3}$ dots Reduced $\mathbf{1}$ dot Bold $\mathbf{3}$ dots OCRA-like $\mathbf{3}$ dots EFF Swiss Bold \& other fonts varies with each letter

3-16 Defining Fields

If a line field is defined after the overlay field, the line field is not blocked out by the overlay field, regardless of the overlay field's color attribute.
C9. alignment Alignment of constant text in the field. Options:L Align on left side of field.C Center text within field (for monospaced fonts only)
R Align on right side of field (for monospaced fonts only)
B Align at midpoint of field
E Align at end of field.
Use L, B, or E for any font.
C10. char rot Character rotation. Options:
0 Top of character points to top of field
1 Top of character points to left of field
2 Top of character points to bottom of field
3 Top of character points to right of field
C11. field rot Field rotation. Lower left corner of field is the pivot point.Options:0 Top of overlay points to top of supply1 Top of overlay points to left of supply
2 Top of overlay points to bottom of supply
3 Top of overlay points to right of supply
Note: Rotation is affected by the pivot point, which varies depending on how text is justified.
C12. "fixed char" Fixed characters to appear in the field. Maximum 2710 characters. Enclose in quotation marks.

C13. sym set Symbol set. Use 0 for the Internal Symbol Set. For scalable fonts, use:
1 ANSI Symbol Set
102 UNICODE (user input) for particular mapping
437 DOS Code Page 437 (Domestic)
850 DOS Code Page 850 (International)
852 DOS Code Page 852 (Latin 2)
855 DOS Code Page 855 (Russian)
857 DOS Code Page 857 (IBM Turkish)
860 DOS Code Page 860 (MS-DOS Portuguese)
$1250 \quad$ Code Page 1250 (Latin 2)
1251 Code Page 1251 (Cyrillic)
1252 Code Page 1252 (Latin 1)
1253 Code Page 1253 (Greek)
1254 Code Page 1254 (Turkish)
1255 Code Page 1255 (Hebrew)
1256 Code Page 1256 (Arabic)
1257 Code Page 1257 (Baltic)
1258 Code Page 1258 (Vietnam)
The CG Triumvirate ${ }^{T M}$ typefaces support only ANSI and DOS Code Page 437 and 850 Symbol Sets. The scalable font does not support Code Page 1256 (Arabic). The UNICODE code page is for downloaded UNICODE (double-byte) fonts. See Appendix C, "Symbol Sets/Code Pages," for more information.

Example $\quad C, 100,80,0,1,1,1, B, L, 0,0, " M A D E$ IN USA", 0 i
Defines a constant text field starting at row 100, column 80. It does not have any additional inter-character gap. The Standard font is used without any additional magnification. The printing is black on white and left justified. No field or character rotation is used. "MADE IN USA" is printed in this field. The internal symbol set is used.

Defining Line Fields

Use lines to form borders and mark out original prices. Define each line separately. This field is not assigned a field number, but is counted as a field (keep this in mind, as the printer allows a maximum of $\mathbf{2 0 0}$ fields per format). You can define any line length and a thickness up to 99 dots, as long as the solid black print does not exceed 30 percent of any given square inch of the label.

Line Types

You can create horizontal and vertical lines. There are two ways to define lines.

Segments You choose the starting point and ending point.

Vectors You choose the starting point, the angle, and the length of the line.

Syntax

```
L,type,row,column,angle/end row,length/
end col,thickness,"pattern" |
```

L1. L
Line Field.
L2. type
Type of line. Only vertical and horizontal lines are supported. Options:
S Segment. You choose the starting point and ending point.

V Vector. You choose the starting point, angle, and length.

L3. row	Distance from bottom of print area to the starting point.
L4. column	Distance from left edge of the print area to line origin.
L5. angle /end row	If Using Segments: Row location of ending point. Measure from bottom of print area. Ranges same as row above. On hor value must match item L3. If Using Vectors: Angle of line. Options: 0, 90, 180, or 270.
L6. length/ end col	If Using Segments: Column location of end point. Measure from left edge of print area. Ranges same as column above. On vertical lines, this value must match parameter L4. If Using Vectors: Length of the line in selected units. Ranges for horizontal lines: English 0-189 Metric 0-479 Dots 0-383 Ranges for vertical lines: English 0-1200 Metric 0-3045 Dots 0-2436

Using the chart below for reference, write the line thickness (1-99) in box L7. Measured in dots.

Note: Line thickness fills upward on horizontal lines, or to the right on vertical lines.

Dots	Thickness
1	
10	
24	
48	
96	

L8. "pattern" Line pattern. Enter "".
Example L,S,110,70,110,350,10," " |
Defines a horizontal line field as a segment starting at row 110, column 70 and ending at row 110 , column 350 . The line thickness is 10 dots.

Defining Box Fields

Use boxes to form borders or highlight items of interest. Define each box field separately. This field is not assigned a field number, but is counted as a field (keep this in mind, as the printer allows a maximum of 200 fields per format). You can define any line length and a thickness up to 99 dots, as long as the solid black print does not exceed 30 percent of any given square inch of the label.

```
Syntax Q,row,column,end row,end col,thickness,
    "pattern" |
```

Q1. Q Box (Quadrilateral) Field.

Distance from bottom of print area to lower left corner of box. English 0-1200 Metric: 0-3045 Dots: 0-2436

Q3. column

Q4. end row
Distance from bottom of print area to upper right corner of box. Ranges same as row.

Distance from left edge of print area to lower left corner of box. English 0-189 Metric 0-479 Dots 0-383

Q5. end col
Distance from left edge of print area to upper right corner of box. Ranges same as column.

SAHPLE

Q6. thickness
Using the chart below for reference, write the desired line thickness (1-99) in box Q6. Measure in dots.

Note: Line thickness fills upward on horizontal lines, or to the right on vertical lines.

Dots	Thickness
1	
10	
24	
48	
96	

Q7. "pattern" Line pattern. Enter "".
Example Q,240,80,270,130,3,"" |
Defines a box field starting at row 240, column 80. It ends at row 270 , column 130. It has a thickness of 3 dots.

DEFINING FIELD OPTIONS

This chapter provides a reference for defining

- field options in formats
- check digit packets.

Applying Field Options

Field options further define text and bar code fields. The text, constant text, or bar code field must be previously defined before you can apply any field option to it. Define options immediately after the field to which they apply.

Combining Field Options

You can use more than one option with most fields. When you use multiple options for the same field, you must place the options in the order you want to apply them to your format.

Restrictions

Some options cannot be used together. See the following sections addressing individual options for specific combinations to avoid.

Example $\quad R, 1,3,1,3,1,1$;
Syntax R,option\#, parameter...parameter ;
$R 1 . R \quad$ Indicates field option header.
R2. option\# Option number:
1 Define Fixed Characters
2 Data Type Restrictions
4 Copy Data
30 Pad Data
31 Calculate Check Digit
42 Format as a price field
50 Define Bar Code Densities
51 Define Security and Truncation of PDF417 Bar Codes
52 Define Width or Length of PDF417 Bar Codes
60 Define Incrementing/Decrementing Fields
61 Reimage fields
R3. parameter(s) Varies per option. See the following option descriptions.

Option 1 (Fixed Data)

Fixed data is information (a company name or store number) you want to print on all labels. You can define fixed characters for an entire field or for part of a field.

Syntax	R,1,"fixed char"
R1. R	Option Header.
R2. 1	Option 1.
R3. fixed char	Characters to insert. Enclose in quotation marks. If you are defining fixed characters for part of a field, place underscores (_) in non-fixed positions. Any spaces in the phrase are fixed characters. Range 0 to $\mathbf{2 7 1 0}$.

Underscore characters are stripped out and the data is compressed if no data is supplied by the batch and the field length is variable.

Example \quad R,1,"_ _ _\%\$_ _ _ _ _"
Uses fixed characters (\%\$) in positions 4 and 5. The other positions are variable.

Example R,1,"MONARCH" |
"MONARCH" appears as a fixed field in this example.
To fill in the non-fixed portion of the field, see "Defining Batch Data Fields" in Chapter 6. As an alternative, you can apply Option 4 to copy data into the non-fixed character positions.

Option 2 (Data Type Restrictions)

This option restricts the data type for a particular field. You can use Option 2 only once per field.

If you do batch entry only in the batch packet, you do not need to apply Option 2. Use this option only for offline batch entry.
Syntax
R,2,char_code |

R1. R Option Header.
R2. 2 Option 2.
R3. char code

Character type for the field. Use:	
$\mathbf{1}$	Numeric only (0-9)
$\mathbf{2}$	Letters only (A-Z,a-z)
$\mathbf{3}$	Symbols only (printable characters other than letters
	or numbers)
$\mathbf{4}$	Letters and numbers only
$\mathbf{5}$	Numbers and symbols only
$\mathbf{6}$	Letters and symbols only

Spaces are permitted in all categories. You can also use a combination of any two (letter, numbers, or symbols) character types.

A use for this option is a quantity field, where the operator could enter only numeric data.

Example $\quad \mathrm{R}, 2,2$ I
Restricts the field data to letters only (A-Z or a-z).

Option 4 (Copy Data)

You can create a field that uses data from another field. This is useful for creating merged fields or sub-fields. You can copy the information from multiple fields into one field by applying the copy procedure more than once. Copy data is the only option you can apply to a field more than once.

The maximum number of characters defined in box T3 or B3 must allow for the number of characters you will place in the field, including any price, check digit, or fixed characters inserted by the printer. The maximum number of characters in the field into which data is copied cannot exceed 2710 or the maximum number of characters permitted by the bar code.

When copying from more than one field, copy into the destination field from left to right.

Syntax \quad| R,4,src fld, src start, \# to copy, dest |
| :--- |
| start, copy code |

R1. R
R2. 4
R3. src fld
R4. src start

R5. \# to copy
R6. dest start

R7. copy code

Field Option Header.
Option 4.
Field number from which data is copied. Range: 0 to 999.
Position number in the source field of the first character to be copied. Character positions are numbered 1 to 2710, starting from the left.

Number of characters to copy. Range: 1 to 2710.
Position number where copied characters are to begin printing in the destination field. Range: 1 to 2710.

Copy Method.
1 Copy field as is (including price symbols, pad characters, check digits, etc.).

2 Copy unformatted data (without price characters, pad characters, etc.).

Copies data from field \#3, starting at the first position and copying three characters. In the destination field, the information is placed in position 1 and copied as formatted data.

Merging Fields

You can copy data to merge the contents of fields. Use the copy data option as many times as necessary to copy all the appropriate fields into the merged field.

In the following example, two text and two non-printable fields are shown. Data from these fields is merged to form field 5 , and is then printed as a bar code.

Field	Data	Field Type
1	203	Non-printable
2	339	Non-printable
3	8	Text
4	BLUE	Text
5	2033398 BLUE	Bar Code

To create this sequence:

1. Define fields $1,2,3$, and 4.
2. Define field 5 as a bar code. Allow enough characters in the bar code field to hold all the copied characters.
3. Apply Option 4 to field 5 once for every source field.

Sub-Fields

You can copy a segment of data from one field into a new location, called a sub-field. For example, extract part of the data in a bar code and display it in text form in a sub-field. Then, use the copy data option.

Option 30 (Padding Data)

You can add characters to one side of a field to "pad" the field. Padding allows you to fill in the remaining spaces when the entered data does not fill an entire field.

If a variable length field is not completely filled with batch data, this option fills the remaining positions in the field with the character designated by Option 30.

Syntax R,30,L/R,"character" |

R1. R Option Header.
R2. $30 \quad$ Option 30.
$R 3 . L / R \quad$ Indicates type of padding
L Pad field on left side
R Pad field on right side
R4. "character" Pad character must be within the 0-255 decimal range and enclosed inside quotation marks.

Note: Do not use on fixed length fields.
Example R,30,L,"X" |
Pads data with an " X " on the left side of the field.

Sample Use for Padding

If you have a variable length bar code that you want to occupy a fixed amount of space on the supply, use pad characters. If the maximum number of characters in the bar code is 15 , but the batch record only has 10 characters, the padding option fills the remainder of the field with pad characters.

Option 31 (Calculate Check Digit)

The printer generates a check digit if you apply Option 31 to the field. You cannot use this option if the field contains a UPC, EAN, or Code 39 (with the MOD43 check digit) bar code.

Syntax R,31,gen/ver, check digit \# |
R1. $R \quad$ Option Header.
R2. 31 Option 31.
R3. gen/ver Enter \mathbf{G} to generate a check digit.
R4. check digit \# Specifies a check digit scheme. Enter a number that identifies a check digit scheme that has been defined. For more information, see "Using Check Digits." Range: 1-10.

Example R,31,G,5 :
Generates a check digit using the previously defined check digit scheme 5.

Option 42 (Price Field)

Abstract

You can apply options that will insert monetary symbols automatically. Do not use this option with Option 31 (define a check digit) or Option 60 (increment or decrement a field). This option is not recommended for bar codes. When determining the maximum number of characters, add the maximum number of digits and the monetary symbols.

Syntax R,42,appearance code :
R1. R Option Header.
R2. 42 Option 42.

R3. appearance	Enter 1 to print price field in standard notation, as defined by code
country setting.	

Example R,42,1
Uses a price field that prints the monetary symbol and notations as defined in the monetary formatting packet.

Option 50 (Bar Code Density)

You can apply this option to bar code fields when you want to create custom densities. When you apply this option, it overrides the density value in the bar code field.

When using this option, set the density parameter in your bar code field to the default value. You can only use this option once for each bar code field. This option overrides the density selected in the bar code field.

Bar codes produced using Option 50 may not be scannable. The additional character gap, narrow space, and wide space parameters are valid only with Code 39 and Codabar. If these parameters are specified for any other bar codes, they will be ignored by the printer. Do not use Option 50 with UPC or EAN bar codes.

Syntax $\quad \begin{aligned} & \text { R,50, narrow, wide, gap, nar_space, } \\ & \text { wide_space }\end{aligned}$
R1. R Field Option Header.
R2. 50 Option 50.
R3. narrow Dot width of the narrow element. Range: 1-99.
R4. wide Dot width of the wide element. Range: 1-99.
R5. gap Additional dot space between characters. Enter a value of 1 99. (Code 39 and Codabar only.)

R6. nar_space Additional dot width of the narrow bar code space. (Code 39 and Codabar only). Range: 1-99.

R7. wide_space Additional dot width of the wide bar code space. (Code 39 and Codabar only). Range: 1-99.

Example

$$
R, 50,4,8,4,4,8
$$

Creates a custom bar code density with a narrow element of 4 dots, a wide element of 8 dots, a gap of 4 dots, 4 additional dot widths for the narrow bar code space, and 8 additonal dot widths for the wide bar code space (if this is a Code 39 or Codabar bar code).

Option 51 (PDF417 Security/Truncation)

You can define a security level and choose whether or not to truncate a PDF417 bar code. Higher security levels add data to a bar code, improving scan reliability. Some damaged bar codes may still be scannable if the security level is high enough. You can use this option to create standard PDF417 bar codes or use the truncated option to create a narrower bar code. This option can appear only once per PDF417 field, in any order, following the bar code field.

As the security level is increased, so is the size of your PDF417 bar code. For each level increased, the bar code will double in size.

Syntax R,51,security,stand/def ।
R1. R Option Header.
R2. 51 Indicates Option 51.
R3. security Security level ranges from 0-8 (0 is the default).
Higher security levels add data to a bar code, improving scan reliability. Some damaged bar codes may still be scannable if the security level is high enough.

R4. stand/def Truncation selector. Valid values:
S (default) a standard PDF417 bar code
T truncated
Example $\quad \mathrm{R}, 51,2, \mathrm{~S}$:
Defines a security level of 2 for a standard PDF417 bar code.

Option 52 (PDF417 Width/Length)

This option defines the image width or length of a PDF417 bar code. If you define a fixed number of columns (width), the bar code expands in length. If you define a fixed number of rows (length), the bar code expands in width.

Column value does not include start/stop or left/right indicator columns.

If this option does not immediately follow the PDF417 bar code field, the default settings are used. You can only use this option once per PDF417 bar code field.

Syntax R,52,row/column, dimension :
R1. R Option Header.
R2. 52 Indicates Option 52.
R3. row/column Indicates if you are defining the number of rows or columns.
R Row
C Column
If you specify rows, the bar code expands in columns, or vice versa.

R4. dimension The number of rows or columns defined for the bar code. The default is 4 . Valid values:
3-90 for rows
1-30 for columns
Example \quad R,52, $\mathrm{C}, 10$ ।
Defines the column width of 10, which expands the PDF417 bar code length by 10 .

Option 60 (Incrementing/Decrementing Fields)

You may have an application, such as serial numbers, in which you need a numeric field to increment (increase in value) or decrement (decrease in value) on successive tickets within a single batch. Incrementing or decrementing can be applied to numeric data only. If you have a field that includes letters and digits, apply incrementing or decrementing to only the portion of the field that contains digits.

Syntax R,60,I/D,amount,1 pos,r pos
R1. R Option Header.
R2. 60 Option 60.
R3. I/D I incrementing field
D decrementing field
R4. amount Amount to increase or decrease. Range: 0-999.
R5. I pos Leftmost position in inc/dec portion of field. If this value is not entered, the default value $\mathbf{1}$ is used. Range: 0-2710.

R6. r pos Rightmost position in inc/dec portion of field. If this value is not used, the entire field length is used as the default. Range: 0-2710.

Example R,60,I,5,1,6
Increments a field by 5 each time the field is printed. The field increments beginning with the first left position and ending with the sixth position.

Fixing the First Number in the Incrementing Sequence

There are two ways to enter the first number in the incrementing sequence. You can use batch data to define the first number as a fixed character. The first number in the sequence must contain the same amount of digits as the highest number to be counted. For example, to count the numbers 1-999, the first number in the sequence must be entered as 001.

Option 61 (Reimage Field)

This option redraws (reimages) a constant field when you have a constant field next to a variable field on your label. It can be used on text, constant text, bar code, line, or box fields.

These printers do not redraw an area if the field data does not change. When a field changes, that area is cleared and the new field data is imaged. However, the new field data may require a larger area than the previous field did. In some cases, neighboring fields that do not change (constant fields) may be covered with white space from the changing field's (variable fields) area. Use this option to reimage the constant field, or it may appear broken.

The most common use for this option is with incrementing fields on your label, because they may cover a constant field.
Syntax R,61 ;
R1. R Option Header.
R2. 61 Option 61.

Example R,61
Reimages the constant field that appears next to a variable field.

In the above example, Option 61 was applied to the bar code field to keep the incrementing field (Box \#) from blocking out the bar code field.

Using Check Digits

Check digits are typically used to ensure that a text or bar code field scans correctly. If you apply Option 31, the printer calculates a check digit. A check digit scheme determines how the printer calculates a check digit. When you define a check digit scheme, you assign a number to identify it. This number is later entered in box R4 when you apply Option 31 to a field. You can use check digits with text or bar code fields. Check digit calculations are performed on numeric data only.

Do not use check digits with price fields. Do not define a check digit scheme for these bar codes, because they have predefined check digits: UPC, EAN, Code 39 (with the MOD43 check digit), and Code 93.

Syntax	\{A, selector, action, device, modulus, fld_length,D/P,"weights" \| \}
A1. A	Check Digit Header.
A2. selector	Assign a number from 1-10 to this check digit formula.
A3. action	The action to perform. Enter \mathbf{A} to add the check digit scheme.
A4. device	Device. Use R.
A5. modulus	Number from 2-11. The modulus is used to divide the sum of products or the sum of digits.
A6. fld_length	The maximum number of characters the field will contain. Range: 0-2710.
A7. D / P	Algorithm. The algorithm determines how the check digit is calculated. Options: D sum of digits P sum of products
A8. "weights"	String of digits used for calculation. A weight string is a group of two or more numbers that is applied to a field. The number of digits in this string should equal the number in fld_length. Enclose in quotation marks. Range: 0-2710.

\{A, selector, action, device, modulus,
fld_length,D/P,"weights" | \}

A2. selector Assign a number from 1-10 to this check digit formula.
A3. action The action to perform. Enter \mathbf{A} to add the check digit scheme.
A4. device Device. Use R.
A5. modulus Number from 2-11. The modulus is used to divide the sum of products or the sum of digits.

A6. fld_length The maximum number of characters the field will contain. Range: 0-2710.

A7. $D / P \quad$ Algorithm. The algorithm determines how the check digit is calculated. Options:
D sum of digits
P sum of products
A8. "weights" String of digits used for calculation. A weight string is a group of two or more numbers that is applied to a field. The number of digits in this string should equal the number in fld_length. Enclose in quotation marks. Range: 0-2710.

Example \{A,1,A,R,10,5,P,"65432" | \}

Adds check digit scheme number 1 to the printer's memory. The modulus is 10 , the maximum number of characters in the field is 5 . The check digit is calculated by using the Sum of Products and the string of digits used in the calculation is "65432."

Sum of Products Calculation

This is an example of how the printer uses Sum of Products to calculate a check digit for this data:

```
5
```

1. Weights are applied to each digit, starting with the last digit in the weight string. They are applied right to left, beginning at the right-most position of the field. Remember, a weight string must contain at least two different numbers. This example has a weight string of $1,2,3,4$:
field:
weight string:

5	2	3	2	4	5	2	1	9
4	1	2	3	4	1	2	3	4

2. Each digit in the field is multiplied by the weight assigned to it:
field:
weight string: products:

5	2	3	2	4	5	2	1	9
4	1	2	3	4	1	2	3	4
20	2	6	6	16	5	4	3	36

3. Next, the product of each digit is added together. This is the sum of the products.
$20+2+6+6+16+5+4+3+36=98$
4. Divide the sum of the products by the modulus (10 in this case), only to the whole number. The balance is called the remainder.
$10 \quad 9$
$\frac{90}{8}$
5. Subtract the remainder from the modulus.

The result becomes the check digit. In this case, the check digit is 2.
$10-8=2$

Sum of Digits Calculation

This is an example of how the printer uses Sum of Digits to calculate a check digit for this data:

$$
\begin{array}{lllllllll}
5 & 2 & 3 & 2 & 4 & 5 & 2 & 1 & 9
\end{array}
$$

1. Weights are applied to each digit, starting with the last digit in the weight string. They are applied right to left, beginning at the right-most position of the field. Remember, a weight string must contain at least two different numbers. This example has a weight string of $1,2,3,4$:
field:
weight string:

5	2	3	2	4	5	2	1	9
4	1	2	3	4	1	2	3	4

2. Each digit in the field is multiplied by the weight assigned to it:
field:
weight string: products:

5	2	3	2	4	5	2	1	9
4	1	2	3	4	1	2	3	4
20	2	6	6	16	5	4	3	36

3. Next, the digits of the products are added together. Two-digit products are treated as two separate digits.
This is the sum of the digits.
$2+0+2+6+6+1+6+5+4+3+3+6=44$
4. Divide the sum of the digits by the modulus ($\mathbf{1 0}$ in this case), only to the whole number. The balance is called the remainder.

$$
\begin{array}{rr}
& 4 \\
10 & \boxed{44} \\
& \frac{40}{4}
\end{array}
$$

5. Subtract the remainder from the modulus.

The result becomes the check digit. In this case, the check digit is 6.

$$
10-4=6
$$

CREATING GRAPHICS

This chapter provides information on how to

- map out the graphic image using the hexadecimal (hex) or run length method.
- create a graphic packet using a graphic header, bitmap, duplicate, next-bitmap, text, constant text, line, and box fields.
- place a graphic image into a format.

You can use graphic packets to create bitmapped images. To include a graphic packet within your format, your format must contain a graphic field. See "Placing the Graphic in a Format" for more information.

Overview of Bitmapped Images

A printed image is formed through a series of dots. Each square on the grid below represents a dot on the printhead. The graphic image is created by blackening dots in a specific pattern. You can print varying shades of gray according to the concentration of dots on the image. When the dots are printed together, the end result is a graphic image.

Determining a Method

You can use one of two methods to map out your graphic image:
Hex Method The dot sequences are segmented into binary numbers and then converted to hex numbers.

A graphic using gray-scaling, several slanted lines, or several vertical lines typically translates more efficiently with hex representation.

Run Length Encoding Method

The dot sequences are segmented into black and white strings within a row. The total count of each white string is converted to a lower-case letter, corresponding to numeric value. The total count of each black string is converted to an uppercase letter, corresponding to numeric value. This method can reduce imaging time for graphics that contain repetitive rows of dots. A graphic with horizontal lines or very few white-to-black borders typically translates more efficiently with run length encoding.

The most efficient encoding method depends on how complicated your graphic image is and whether or not imaging time is a concern. You may want to experiment with both encoding methods to get optimal performance.

Designing Bitmapped Images

Once you determine the encoding method to use, you can begin mapping out your graphic image.

The image that you map must be an upside down mirror image of the final result.

Special Considerations

Solid black print cannot exceed 25% of any given square inch of the supply. If the black print exceeds this limit, you may lose data or damage the printhead.

In the first label, the large " M " logo and thick black line exceed the allowed black to white print ratio. In the second label, the large " M " logo does not exceed the black to white print ratio.

The following steps explain how to derive a hex character string from a bitmapped graphic.

Each square on the grid represents a dot. A black square indicates the dot is ON , and a white square indicates the dot is OFF. A sequence of binary numbers, called a bit pattern or bitmap, determines what dots are on and off. The numbers " 0 " and "1" are used for this purpose. The number "1" turns a dot on and " 0 " turns a dot off.

1. Assign 1 to every black square and 0 to every white square.

Abstract

0001111111111111111111111111100000000000000000000000000000 0000000000000000000000000000000000000001111111111110000000000000000000000000011111111110000000000000000000 000000000000000000000000000000111100000000000000001111111111111111111111111110000000000000001111000000000 0000000000000000000000000111110000110000111110000 00000000000000000000000110000011000001100 0000000000000000000000011000110 000000000000000000000001110 0000000000000000000000011111111111111111111111111111110000000000000000000111111111111111111111111111111110 000000000000000000000001111111111111111111110000000000000000000000000000000000000111111111111111111111100 000000000000000000000000000111111100000000000000000001111111111111111111000000000000000000001111111000000 000000000000000000000000000111000000001100000000111000000 0000000000000000000000000000000000110000111000000 00000000000000000000000000000011111111111111000000000000000000000000000000000000011111111111111000000000 0000000000000000000000000001111111000000000000000000011111111111111111111000000000000000000001111111000000 00000000000000000000000000111000000001100000000111000000 0000000000000000000000000000001111111111111100000000000000000000000000000000000000111111111111111000000000 0000000000000000000000000001111111000000000000000000011111111111111111111000000000000000000001111111000000 0000000000000000000000000001110000000011100000000111000000 0000000000000000000000000000000000110000111000000 000000000000000000000000000001111111111111100000000000000000000000000000000000011111111111111000000000 000000000000000000000000000111111100000000000000000001111111111111111111100000000000000000001111111000000 0000000000000000000000000001110000000011100000000111000000 00000000000000000000000000000011000000000 00000000000000000000000000000011111111111111000000000000000000000000000000000000011111111111111000000000 00000000000000000000000000011111110000000000000000000111111111111111111100000000000000000001111111000000 0000000000000000000000000001110000000011100000000111000000 0000000000000000000000000000000000110000111000000 00000000000000000000000000000011111111111111000000000000000000000000000000000000011111111111111000000000 00000010000000000000000000011111110000000000000000000111111111111111111111000000000000000000001111111000000 00000001111000000000000000000000001110000111000000 000000001110000000000000000000111111111111110000000000000000000000000000000000000111111111111111000000000 0000000011111100000000000001110000000011100000001111000000 000000001111111000000000000000000110001111000000

2. Section off the grid in columns of eight. If any rows are not divisible by 8, add enough 0's to complete a column.

001111111111111111111111111100000000000000000000000000000 00000000000000000000000000000000000000011111111111000000000000000000000000001111111110000000000000000000 00000000000000000000000000000000011111001111110000000000000 00000000000000000000000011 | 000000000 | 00000000 | 00000001 | 10000011 | 11111111 | 111111111 | 11111111 | 111111111 | 111111111 | 111111111 | 11111111 | 11111110 | 00001100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 00000000 | 00000000 | 00000001 | 10001111 | 11111111 | 11111111 | 11111111 | 11111111 | 111111111 | 11111111 | 11111111 | 11111111 | 11111110 |

 00000000000000000000001111111111111111111111000000000000000000000000000000000011111111111111111111100 00000000000000000000000001111111100000000000000000000111111111111111111111100000000000000000011111111110000 000000000000000000000000000111111100000000000000000000111111111111111111110000000000000000000001111111000000 $\begin{array}{llllllllllllllll}00000000 & 00000000 & 00000000 & 00011100 & 00000011 & 111111111 & 111111111 & 111111111 & 111111111 & 111111111 & 11111110 & 00000001 & 11000000 \\ 00000000 & 00000000 & 00000000 & 00000000 & 00111111 & 11111111 & 11111111 & 11111111 & 11111111 & 11111111 & 11111111 & 11100001 & 11000000\end{array}$

 $\begin{array}{llllllllllllll}00000000 & 00000000 & 00000000 & 00000011 & 11111111 & 11110000 & 00000000 & 00000000 & 000000000 & 00000000 & 011111111 & 11111110 & 00000000\end{array}$ $\begin{array}{llllllllllllllll}00000000 & 00000000 & 00000000 & 00011111 & 11000000 & 00000000 & 00000111 & 111111111 & 11111111 & 00000000 & 000000000 & 00011111 & 11000000 \\ 00000000 & 00000000 & 00000000 & 00011100 & 00000011 & 111111111 & 11111111 & 11111111 & 11111111 & 11111111 & 111111110 & 00000001 & 11000000\end{array}$ $\begin{array}{llllllllllll}00000000 & 00000000 & 000000000 & 00011100 & 00000011 & 11111111 & 111111111 & 111111111 & 111111111 & 111111111 & 11111110 & 00000001 \\ 00000000 & 00000000 & 00000000 & 00000000 & 00111111 & 11111111 & 11111111 & 11111111 & 11111111 & 11111111 & 11111111 & 1110000000 \\ 11000000\end{array}$ $00000000000000000000000000000011 \quad 111111111111000000000000 \quad 0000000000000000000000001111111111111110 \quad 00000000$ $\begin{array}{lllllllllllllllllll}000000000 & 00000000 & 00000000 & 000111111 & 11000000 & 00000000 & 00000111 & 111111111 & 11111111 & 00000000 & 00000000 & 00011111 & 11000000 \\ 00000000 & 00000000 & 00000000 & 00011100 & 00000011 & 11111111 & 11111111 & 11111111 & 11111111 & 11111111 & 11111110 & 00000001 & 11000000\end{array}$ 000000000000000000000000000000000110000111000000 00000000000000000000000000000011111111111111100000000000000000000000000000000000000111111111111111000000000 $\begin{array}{lllllllllllllll}00000000 & 00000000 & 00000000 & 00011111 & 11000000 & 00000000 & 00000111 & 111111111 & 111111111 & 00000000 & 00000000 & 00011111 & 11000000 \\ 00000000 & 00000000 & 000000000 & 00011100 & 00000011 & 111111111 & 11111111 & 11111111 & 11111111 & 11111111 & 111111110 & 00000001 & 11000000\end{array}$ $\begin{array}{lllllllllllll}00000000 & 00000000 & 00000000 & 00000000 & 00111111 & 111111111 & 111111111 & 111111111 & 111111111 & 111111111 & 1111111111 & 11100001 & 11000000 \\ 00000000 & 00000000 & 00000000 & 00000011 & 11111111 & 11110000 & 00000000 & 00000000 & 00000000 & 00000000 & 01111111 & 11111110 & 00000000\end{array}$ 000000100000000000000000000111111100000000000000000001111111111111111111000000000000000000001111111000000 $\begin{array}{llllllllllllllllll}00000011 & 00000000 & 00000000 & 00011100 & 00000011 & 11111111 & 11111111 & 11111111 & 111111111 & 11111111 & 11111110 & 00000001 & 11000000 \\ 00000001 & 11100000 & 00000000 & 00000000 & 00111111 & 11111111 & 11111111 & 11111111 & 11111111 & 11111111 & 111111111 & 11100001 & 11000000\end{array}$

3. One row at a time, convert each group of eight binary digits to hex.
starting at position 49 ...
$00111111=3 \mathrm{~F}$
$1111111=\mathrm{FF}$
$1111111=\mathrm{FF}$
$11110000=F 0$
4. Write the hex values for each row as a continuous string.
row 1, position 49 = 03FFFFFF00000
5. Repeat steps 3 through 4 for each row on the grid.
6. Insert the hex values in syntax format.

Using the Run Length Encoding Method

The following steps explain how to derive a run length character string from a bitmapped graphic.

Each square on the grid represents a dot. A black square indicates the dot is ON , and a white square indicates the dot is OFF.

For visual clarity, the following example shows "1" to indicate when a square is ON, and " 0 " to indicate when a square is OFF. You do not have to convert your dots when using the run length method.

	00000000	00000000	00000000	00000000	00000000	00111111	11111111	11111111	11110000	00000000	硅	00000000
00000000	00000000	00000000	00000000	00000001		11000000	00000000	00000000	00001111	11111000	00000000	00000000
									00			
00000000	0000	0000	01111100	001	111	111	11	111	11	11	1110000	11
00000000	00000000	00000001	100000	111	111	111	111	11	11	11	11	000
00000000	000000	000	10001111									
00000000	000	00000001	111	11	11	00000000	0000000	000	00000000	01	11	11
00000000	000000	00000	01	10	00	000	11	11	0000	000000	001	11110000
	00000000	00000000	000	11000000	00000000	000			00000000	0000000	0001	
	000	00000000	00000000	001	111	111	11	111	111	111	1110000	110
00000000	000	0000000	00000011	111	111100	0000000	000000	0000	000	01	111	00
	00	00	00011111	11000000	00000000	0000011	111111	11111111	00000000	00000000	00011111	11000000
0000000	000	00000000	00000000	001		11111111	111		11111111	11111111	1110000	11
	000	00000000	00000011			00	00	00000000				
	0000000	00000000	00011111	11000000	00000000	0000011	1111111	11111	00	00	00	11
	00	00000000	00011100	0000001	11111	1111111	11	111	111	1111111	00	
0000000	000	000	00	00111111	11111111	1111111	111	11111111	11111111	11111111	11100	
00000000	0000	00000000	00000011			00000000	00000000	00000000	00000000		11111110	000
	000		0001111			0000011						
	00	00	00011100	00000011	111	11				1111	00	
	0000	0000	00000000								1110000	
00000000	000	00000000	00000011	11111111	11110000	00000000	00000000	00000000	00000000	0111111	11111110	000
0000000	000	00	000	11000000	00000000	00000111	11111111	11111111	000	00000000	0001	
	00000											
	000											
000	00000000	00000000	00000011		11110000	00000000	00000000	00000000	00000000			
010	00000000	00000000	00011111	11000000	00000000	00000111	11111111	11111111	00000000	00000000	00011111	
11	00000000	00000000		00000011								
			00000000								001	
	11111100	00000000	00011100	00000011		11111111	11111111					

1. Count the number of consecutive OFF or ON dots in a row. Write the number of consecutive dots in sequence for the first row on the grid. Write "ON" or "OFF" after each number to indicate ON or OFF dots.
```
(row 1, position 50) 26 on
(row 2, position 39) }11\mathrm{ on, 26 off, 9 on
(row 3, position 34) 5 on, 45 off, 6 on.
```

2. Replace each number you have written with its corresponding code from the Dot to Run Length Encoding Chart provided in Appendix C, "Symbol Sets/Code Pages." Be sure to use CAPITAL letters for black dots and lower-case letters for white dots.
```
26 on (Z)
11 on (K), 26 off (z), 9 on (I)
```

If the number is greater than 26, write z, followed by the letter corresponding to the amount over 26. For example, to represent 45 off dots, write zs.

```
5 on (E), 45 off (zs), 6 on (F)
```

3. Write the letter codes in sequence, uninterrupted, for each row.
```
(row 1,position 50) Z
(row 2,position 39) KzI
(row 3,position 34) EzsF
(row 4,position 30) DpZoD
```

If the end of the line specifies OFF dots (lower-case letters), the ending lower-case letters can be omitted. For example, uZFu can be written as uZF.
4. Repeat steps 1 through 5 for each row on the grid.
5. Insert the code values in syntax format.

Determining How to Store the Image

Once you have mapped out your graphic image, determine how you want to store it. You have two options:

- RAM
- Temporary Storage
- Flash

Using RAM

You should use RAM when the graphic image is used by several formats, because you only have to send the graphic image once. This eliminates the need to send the graphic image repeatedly. See "Placing the Graphic in a Format," for more information about using the graphic packet in a format. Graphics smaller than approximately $1 / 2$ inch by $1 / 2$ inch can be stored in printer RAM and referenced by the graphic ID number.

Graphics are stored in the image buffer and remain there until another format is sent or the printer is turned off.

Using Temporary Storage

You should use temporary storage when the graphic image is used only in one format or your graphic image is very large. Graphic data in temporary storage is held in the image buffer until the graphic is printed. Then, it is cleared from memory when you send a new or updated batch. You can use the same graphic image multiple times on a format. Send the graphic image to the printer after the format to which it applies.

If a graphic is stored in temporary storage, do not place a graphic field in the format. This will cause an error. Instead, position the graphic image by using the row and column locations in the graphic packet header.

Image memory (temporary storage) will accept a graphic packet 2436 rows long with 384 dots per row.

Creating a Graphic Packet

Your graphic packet can contain

- bitmapped fields (for bitmapped images)
- constant text fields
- lines
- boxes.

Images using hex representation or run length encoding are bitmapped images. See "Designing Bitmapped Images" to design your bitmapped image.

Once you design your graphic image, you are ready to define a graphic packet. This packet generates the graphic image you use in a format.

Positioning the Graphic Image

This section explains how to position the graphic image within a graphic packet header, a field of a graphic packet, or within a format.

Within the Graphic Packet Header

When you are using RAM, the row and column parameters in the graphic header are usually 0,0 , because placement is controlled by the graphic field in your format. This is especially true when designing a compliance label overlay.

When you are using temporary storage, these parameters control the placement of the graphic image on the supply.

The area enclosed within the dotted lines represents the graphic image starting at 0,0 (as defined in the graphic header).

If you want a fixed amount of white space around your graphic image, use something other than 0 for row and/or column.

The area enclosed within the dotted lines represents the graphic image starting at 0,0 with a fixed amount of white space $(10,10)$ around the graphic image.

Within the Field

In a bitmap, constant text, line, or box field, the row and column parameters control where an individual field or bitmapped row begins in relation to the coordinates defined in the graphic header.

The bottom of the triangle in this example represents the first field of the graphic
 packet starting at 10,0 .

Within a Format

When you define the graphic field within your format, the row and column parameters represent where on the format to place the graphic image.

If you are doing a compliance label, these numbers are usually 0,0 , because your compliance label covers the entire supply. See "Placing the Graphic in a Format" for a sample compliance label.

If you are placing a graphic (a logo, for example) within a certain area on your supply, enter the starting position (bottom left corner) of the graphic image.

This label shows the triangle "logo" beginning (the bottom left corner) at 155,33 as defined in the graphic field.

Defining the Graphic Header

Every graphic packet must contain a graphic header. This is the first thing you enter. It identifies and provides important measurement and formatting information for the graphic. Bitmap, duplicate, next-bitmap, constant text, line, and box fields follow the graphic header, if they are used.

Syntax

G1. G
G2. graphID
G3. action The action to perform to the graphic. Options:
A Add the graphic.
C Clear the graphic from the printer.
G4. device

G5. units

G6. row

G7. column

G8. mode
G9. "name" Graphic name (optional), 0-8 characters, enclose within quotation marks.

Example \{G,99, A, R, G, 0, 0, 0, "99Wire"

Adds a graphic image identified by number 99 to volatile RAM. The graphic uses dot measurement. The image will be placed according to the row and column parameters in the graphic field. The imaging mode is 0 and the image is called 99Wire.

Creating Bitmap Fields

This defines one row of dots, starting at a specific row and column within the graphic image. Each unique row of dots requires a bitmap field. A bitmap field can later be repeated by using a duplicate field.

Syntax	B,row, column, algorithm, "data" \|
B1. B	Bitmap Field.
B2. row	Distance (in dots) from the graphic image's bottom margin to the bitmap line.
	English $\mathbf{0}-\mathbf{1 2 0 0}$ Metric $\mathbf{0}-\mathbf{3 0 4 5}$ Dot $\mathbf{0 - 2 4 3 6}$
B3. column	Distance (in dots) from the graphic image's left edge to the bitmap line.
	English $\mathbf{0 - 1 8 9}$ Metric $\mathbf{0 - 4 7 9}$ Dots $\mathbf{0 - 3 8 3}$
B4. algorithm	Coding method for bitmap data:
	H Hex Representation R Run Length Encoding
B5. data	Character string made up of hex or run length encoding. Do not put spaces or any other character between the numbers. Range: 02710.
Example	
Defines a bitmapped graphic field. The image begins 39 dots from the bottom and 56 dots from the left edge of the graphic area. Hex representation is used.	

Creating Next-Bitmap Fields

This field uses the previous field's row and column locations. It allows you to use the bitmap or duplicate field data without having to recalculate row and column locations. This field represents one row of dots on the image.

```
Syntax
N,adjdir,adjamt,algorithm,"data" |
```

N1. N Next-Bitmap Field.

N2. adjdir	Increments or decrements the row count. Inserts the duplicate line after or before the current row.
	0 Increments (inserts after)
	1 Decrements (inserts before)
	For example:
	B,50,35,R,"GsSsG" \|
	N,0,R,"DpZoD"
	prints a next-bitmap field on row 51 at column 3

N3. adjamt Amount of row adjustment in dot rows. Using 0 overwrites the

N4. algorithm Coding method for bitmap data:
H Hex Representation
R Run Length Encoding

N5. "data" \quad| Character string made up of hex or run length encoding. Do |
| :--- |
| not put spaces or any other character between the hex |
| numbers or run length code letters. Range: $\mathbf{0 - 2 7 1 0 .}$ |

Example B,39,56, H, "3FFFFFFO" N, 0, 1, H, " 000000 EOOOOON

Defines a next-bitmap graphic field beginning on row 40. The row count increments by 1. Hex representation is used.

Creating Duplicate Fields

If a line of data is identical to a previous bitmap or next-bitmap field, the duplicate field allows you to repeat the dot sequence without retyping the data. A duplicate field represents one row of dots on the image.

Duplicate fields are useful when you have a graphic with a lot of repetition.

Syntax D,adjdir,adjamt, count :
D1. D Duplicate Field.
D2. adjdir Increments or decrements the row count. Inserts the duplicate line after or before the current row.

0 Increments (inserts after)
1 Decrements (inserts before)
For example:
B,50,35,R,"GsSsG" |
D,0,20,2
inserts row 50 again at row 70 and row 90. Rows 70 and 90 do not have to be defined later.

D3. adjamt Amount of row adjustment in dot rows. Range: 0-999. The above example adjusts the duplicate field to image on row 70 and 90 (adding 20 to the current row count).

D4. count Number of times to duplicate the line. Range: 0-999.
Example B,117,24,H,"03FffFffffffffffFFFFC" | D, 0, 1, 2 |

Defines a duplicate field that is imaged after the bitmap line. This field duplicates the preceding bitmap line twice (at row 118 and 119).

You can use constant text, line, or box fields in a graphic packet to create a compliance label overlay. See Chapter 3, "Defining Fields," for more information about these fields.

Sample Hex Graphic Packet

Sample Run Length Graphic Packet

B,39,50, R, "Ź", 0, 0 , 99 WIRE "
B,39,50, R, "Ź", 0, 0 , 99 WIRE "
B', 40, 39, R', "KzI"
B', 40, 39, R', "KzI"
B, 41, 34, R, "EzsF"
B, 41, 34, R, "EzsF"
B, 43, 25, R', "EaZZEAE"
B, 43, 25, R', "EaZZEAE"
B, 44, 23, R, "BeZZMeB"
B, 44, 23, R, "BeZZMeB"
B', 45', 23 ', R', "BCZZW"
B', 45', 23 ', R', "BCZZW"

B, 48, 24, "TzkU"
B, 48, 24, "TzkU"
B, 49, 25, "HtRqJ"
B, 49, 25, "HtRqJ"
B, 50,27, " GsSsG"
B, 50,27, " GsSsG"
D, 0, 4, 4
D, 0, 4, 4
B,51,27,"ChzWgC"
B,51,27,"ChzWgC"
D, 0, 4, 44 ,
D, 0, 4, 44 ,
, 0 , 4,4
, 0 , 4,4
B, 53, $30, \mathrm{R}, \mathrm{NNzkN} "$
B, 53, $30, \mathrm{R}, \mathrm{NNzkN} "$
B, 70', 5 , R, "AuGsSsG"
B, 70', 5 , R, "AuGsSsG"
B, 71, 5, R', "BtChZWgC"
B, 71, 5, R', "BtChZWgC"
B, 72, 6, R, "DxZZEdC
B, 72, 6, R, "DxZZEdC
B, 73, 7, R, "CtNzkN"
B, 73, 7, R, "CtNzkN"
B, 74, 8, R, "FmChZWhC"
B, 74, 8, R, "FmChZWhC"
B, 75, 8, R, "GsZZEdC
B, 75, 8, R, "GsZZEdC
B, 76, 11, R, "JiNzkN"
B, 76, 11, R, "JiNzkN"
B, 77, 12 , R', "NbJzzeC"
B, 77, 12 , R', "NbJzzeC"
, 78, 16, R, "JaElZKmD"
, 78, 16, R, "JaElZKmD"
B, 79, 17, R, "QsSSG" |
B, 79, 17, R, "QsSSG" |
B, 80, 27, R, "ChZWgC"
B, 80, 27, R, "ChZWgC"
D, 0,4,4
D, 0,4,4
B, 81, 34 , R, "ZZEdC"
B, 81, 34 , R, "ZZEdC"
D, 0,4,4
D, 0,4,4
B, 82, 30, R, "NzkN"
B, 82, 30, R, "NzkN"
, 0, 4, 4
, 0, 4, 4
B, 83,27,R, "GsSsG"
B, 83,27,R, "GsSsG"
D, 0 , 4
D, 0 , 4
B, 98, 30, R, "ZZJ"
B, 98, 30, R, "ZZJ"
B, 99, 29, R, "ZZM"
B, 99, 29, R, "ZZM"
B, 100, 27, R, "JbZZE"
B, 100, 27, R, "JbZZE"
B, 101, 26, R', "MnTOI"
B, 101, 26, R', "MnTOI"
B, 102, 26, R, "CbHnTiP"
B, 102, 26, R, "CbHnTiP"
B, 103, 27, R, "CCZZC"
B, 103, 27, R, "CCZZC"
B, 104, 27, R, "GeZWCG"
B, 104, 27, R, "GeZWCG"
B, 105, 28, R, "JaZReH"
B, 105, 28, R, "JaZReH"
B, 106, 32, R, "ZZI"
B, 106, 32, R, "ZZI"
B, 107, 34, R, "ZZE"
B, 107, 34, R, "ZZE"
B, 108, 38 , R, " ZQ"
B, 108, 38 , R, " ZQ"
B, $109,53, R^{\prime}, ~ " T "$
B, $109,53, R^{\prime}, ~ " T "$
D, 0, 1,2
D, 0, 1,2
B, 111, 48 , R, " ZF"
B, 111, 48 , R, " ZF"

B,113,29, R, "CpZBoE"
B,113,29, R, "CpZBoE"
B', 114', 25 ,'R', "DCZZGfB"
B', 114', 25 ,'R', "DCZZGfB"
B, 115, 23, R, "BdZZMeB"
B, 115, 23, R, "BdZZMeB"
B, 116, 22 , R', "AbZZVbA"
B, 116, 22 , R', "AbZZVbA"
B', 117, 22 , R', " ZZZB"
B', 117, 22 , R', " ZZZB"
D, 0, 1, 2
D, 0, 1, 2
B, 120, 23, R, "ZZZ"
B, 120, 23, R, "ZZZ"
B, 121, 25 , R, " " ZZV"
B, 121, 25 , R, " " ZZV"
B, 122, 29, R, " ZZM "
B, 122, 29, R, " ZZM "
B, 123, 32, R', "ZZF"
B, 123, 32, R', "ZZF"
B',124, 39, R', "ZT" |'\}
B',124, 39, R', "ZT" |'\}

Placing the Graphic in a Format

To include a graphic within a format:

1. Design the graphic image as shown in "Designing Bitmapped Images."
2. If you are using RAM, place a graphic field in the format file to reference the graphic. See the following section, "Defining the Graphic Field," for more information.

If you are using temporary storage, you do not need a graphic field in your format to reference the graphic image.
3. Download all the necessary packets (check digit, format, etc.).
4. Send the graphic file to the printer, if you have not already done so. See "Creating a Graphic Packet" for more information.

Defining the Graphic Field

The graphic field in a format references the graphic image by the graphID in the graphic header.

> This field is required only if the graphic will be stored in RAM.

Syntax G,graphID, row, col,mode, rotation I
G1. G Graphic Field.
G2. graphID Unique number from 0-999 to identify the graphic image.

G3. row Distance between the bottom of the print area on the supply to the bottom of the graphic image. Measured in selected units.

English	0-1200
Metric	$\mathbf{0 - 3 0 4 5}$
Dot	$\mathbf{0 - 2 4 3 6}$

The row specified in the constant text, bitmap, line, or box field is added to the row value above to determine the actual position in the format.

G4. column Distance between the left edge of the print area on the supply and the left edge of the graphic. Measured in selected units.

English	O-189
Metric	$\mathbf{0 - 4 7 9}$
Dots	$\mathbf{0 - 3 8 3}$

The column specified in the constant text, bitmap, line, or box field is added to the col value above to determine the actual position in the format.

G5. mode Imaging mode. Enter 0.
G6. rotation The orientation of the graphic on the supply. Enter $\mathbf{0}$.

Example $\quad G, 57,0,0,0,0$ i

Defines a graphic field that is identified by the number 57. The image begins at 0,0 . The imaging mode is 0 and there is no rotation.

Sample Bitmap Graphic Image

The following format shows the graphic packets (hex and run length) in a sample format.


```
G, 99, 132, 30, 0,
T, \(1,5, \mathrm{~V}, 175,100,0,1004,1,1, \mathrm{~B}, \mathrm{~L}, 0,0,0\)
, \(2,5, \mathrm{~V}, 150,100,0,1004,1,1, \mathrm{~B}, \mathrm{~L}, 0,0,0\)
\begin{tabular}{l}
\(\mathrm{T}, 3,15, \mathrm{~V}, 120,25,0,1003,1,1, \mathrm{~B}, \mathrm{~L}, \mathrm{O}, \mathrm{O}, 0\) \\
\(\mathrm{~T}, 4\) \\
\(\mathrm{~L}, 15, \mathrm{~V}, 95\) \\
\hline
\end{tabular}
L', S', 84', 15, 84, 195', 10, "
B, 5, 12, \(\mathrm{F}, 30,65,1,2,40,1, \mathrm{~L}, 0\) i \}
```


PRINTING

This chapter describes how to

- define the batch header, batch control, and batch data files
- create a Print Control Packet.

Defining the Batch Header

Batch data is the actual information printed on the supply. Batch data fills in the format's text, bar code, and non-printable text fields.

A batch packet contains three parts:
batch header identifies the format and how many labels to print.
batch control defines the print job.

batch data

 (optional)defines the actual information printed on the label.

A batch header begins the file. It tells which format the batch uses and how many labels to print. To record batch data, make a copy of the worksheet in Appendix D, "Format Design Tools."
Syntax
\{B,format\#,N/U,quantity |

B1. B Batch Header.
B2. format\# Format number (0-999) to use.
B3. N/U Controls how image is generated.
N New. Erase image and re-image all fields using online data. Any missing fields will be blank.

U Update last image with 1 or more fields. All other fields remain the same as the last queued batch.

Note: Using 0 pre-images the field to reduce the imaging time for labels. See "Batch Quantity Zero Method" for more information.

Example $\{B, 1, N, 1$ i

Defines a batch header that uses format \#1 and reimages all fields using the online data. One label is printed with this batch.

Defining the Batch Control Field

The batch header must precede this field. The batch control field defines the print job and applies only to the batch that immediately follows.

Syntax

```
E,feed_mode,batch_sep,print_mult,
multi_part |
```

E1. E Batch Control Field.
E2. feed_mode Feed Mode. Options:
0 Continuous Feed (default)
1 On-Demand (purchase optional)
E3. batch_sep Batch Separator. Use 0.
E4. print_mult Number of tags (1-999) with the same image.
E5. multi_part Number of identical parts on one tag (1-5).
Example E,0,0,1,1
Defines a batch control field. Continuous feed mode is used and no separator prints between batches.

Defining Batch Data Fields

Batch data fields should be sent in field number order. Use continuation fields for large amounts of data. If you are using \mathbf{N} (New) in the batch header, you must list all fields with your data in sequence. If you are using \mathbf{U}, you need to list only those fields and data that changes from the last printed batch.

Syntax	field\#,"data string " C,"continuation"
field\#	Identifies the text, bar code, or non-printable text field in which to insert the following data. Range: 0-999.
"data string"	Provides the actual information to appear in fields. Enclose in quotation marks. Length: 0 2710 characters.
C "continuation"	Optional. Identifies information to be appended to the data string.
Optional. Provides the actual information to be added to the batch packet. Enclose in quotation marks. Use this option to break up longer fields. Length: 0-2710 characters.	

Example

```
1,"Size 12" |
2,"" |
3,"Blue" |
C,"and this would be appended." |
```

Defines a batch data field. "Size 12" prints in field \#1, a blank line appears in field \#2, "Blue and this would be appended" prints in field \#3.

Using Special Characters in Batch Data

There are two ways to specify special characters in batch data:

- Place a tilde (~) before each character.
- Use a tilde with the decimal ASCII equivalent.

For example, you can use "" or ~034 to print the " character in your batch data; otherwise, the tilde characters are ignored. You can also use $\sim X X X$ where $X X X$ is the decimal equivalent of an unprintable character.

Sample Batch Data with Special Characters

\{B,1,N,1	Decimal Character	What Prints
1,"123~034456789" \|	~034 is "	123"456789
2,"~094983~'126LG4451"	$\begin{aligned} & \sim 094 \text { is } \wedge \\ & \sim 126 \text { is } \end{aligned}$	^983 ~'LG4451

Merged or Sub-Fields

If a field is completely filled by data copied from other fields, use quotation marks without spaces between them for data string.

Incrementing Fields

In incrementing fields, the first number in the sequence must contain the same number of digits as the highest number to be counted. For example, to increment the numbers in a field from 1 to 999, enter the starting number in the batch as 001.

Entering Batch Data for QR Code

QR Code requires certain parameters at the beginning of all batch data.

Syntax	"error_cor mask\# data_input, char" \|
error_cor	Level of error correction. Some damaged bar
	codes may still be scannable if the error correction is high enough. Options:
	H Ultra high reliability level
	Q High reliability level
	M Standard level
	L High density level
	Note: As you increase the error correction level, the maximum number of characters (in the field) decreases.
mask\#	Mask number. Undefined. Leave blank or use 0.
data_input	Type of data input. Options:
	A Automatic
	M Manual
char	Type of characters. Options:
	N Numeric A Alphanumeric
	B Binary K Kanji

Note: In binary mode, the number of characters must be represented by the 4 -digit number in decimal.

Example 1,"HM, NO123456789012345" |
Defines the following batch data for the QR Code: The error correction level is H , which provides very high reliability. Leave the mask number blank. The data input mode is Manual. The type of characters are Numeric and the data is 0123456789012345.

Sample QR Code

\{F,1,A,R,E,200,200,"QRCODE" |
B, 1, 200,V,50,50,36,0,100,2,B,0 | \}
\{B,1,N, 1
1,"HM,NO123456789012345" | \}

Structured Append Mode

QR Code offers a mode called structured append (or concatenated) that allows you to collect data from multiple QR Code symbols and use that data elsewhere. For example, the components of a sub-assembly can have individual QR Codes and the QR Code for the entire assembly contains all the data from the individual codes. This mode also requires certain parameters at the beginning of all batch data.

Syntax	"mode_id code\# \#of_div parity, error_cor mask\# data_input char"
mode_id	Use D to indicate the structured append (or concatenated) mode.
code\#	Code number of the individual symbol in the concatenated set. You must use a two-digit number in decimal.
\#of_div	Total number of symbols in this concatenated set. You must use a two-digit number in decimal.
parity	Parity byte. You must use a two-digit number in hexadecimal. There is no standard parity byte.
error_cor	Error correction level. Some damaged bar codes may still be scannable if the error correction is high enough. Options: H Ultra high reliability level Q High reliability level M Standard level L High density level
	Note: As you increase the error correction level, the maximum number of characters (in the field) decreases.
mask\#	Mask number. Undefined. Leave blank or use 0.
data_input	Type of data input. Options: A Automatic M Manual
char	Type of characters. Options: N Numeric A Alphanumeric B Binary K Kanji
	Note: In binary mode, the number of characters must be represented by the 4 -digit number in decimal.

Example

```
1,"D0205E9,Q0A,"
```

C, "B006qrcode,"

Defines the structured append mode (D) for QR Code. This is symbol (02) of a concatenated set containing (05) symbols. The parity byte is E9. The error correction level is Q, which provides a high reliability. Use 0 for the mask number. The data input mode is Automatic. The type of characters are binary (B) and there will be six (06) data characters (qrcode).

Sample QR Code using a Structured Append

\{F,2,A,R,E,200,200,"QRCODE2" |
B, 1,200,V,50,50,36,0,100,2,B,0 | \}
\{B,2,N,1
1,"D0202E9, Q0A"
C, " 0123456789 ABCD + \qquad âôû~129~064~159~252~224~064"

Downloading Methods

You can download the format and batch data using one of three methods: sequential, batch, and batch quantity zero.

Sequential Method

Using the sequential method, you send all your format and batch data at one time. Use this method when your application does not require operator intervention to input data. All data is sent down at one time, and the printer then images each field. As soon as the last field is imaged, your labels begin to print.

```
Example {Format}
    {Batch Packet}
```


Batch Method

This is similar to the sequential method, but it is used when you want to send multiple batches. All data for the first batch is sent at one time, and the printer then images each field. As soon as the last field for the first batch is imaged, labels begin to print. This process is repeated for each subsequent batch.

```
Example {Format}
    {Batch Packet}
    {Batch Packet}
```


Batch Quantity Zero Method

You may use the batch quantity zero method when your application requires operator intervention to enter data. While the operator is entering data, the previous field is sent with a batch quantity of zero. The printer images the field, but does not print it. After the operator enters the data for the last field, the batch quantity can be specified. The last remaining field is imaged, and the label prints almost immediately.

To use the batch quantity zero method:

1. Send the format and a batch header in one file. The first time you send the batch header, use the parameter \mathbf{N} (new batch), and the parameter $\mathbf{0}$ for (zero quantity). This ensures the label is properly positioned.

The printer images constant text, line, and box fields, but does not print them.
2. Input data for each field, and send it with a batch header using the parameter \mathbf{U} (batch update) and a quantity of zero. When the printer receives the data, it immediately images the field, but does not print it.

At this time, the printer is imaging all associated fields, including fields that copy from other fields.
3. Repeat step 2 for each field except the last one.
4. For the last field, input data and send a batch header with the quantity of labels you want printed. When the printer receives input for the last field, it immediately prints the labels. See "Reducing Imaging Time" in Chapter 9 for an example using the batch quantity zero method.

Modifying Formats

The optional entry method is a quick way to modify your format fields, check digit fields, and configuration packets.

Optional Entry Method

This method enables you to reset only the parameters you want to change. Commas act as placeholders for unchanged parameters. The optional entry method reduces file size and increases the speed at which files are sent to the printer.

STATUS POLLING

This chapter explains how to use status polling.
There are two types of Status Polling:

- Inquiry Request- information about the readiness of the printer.
- Job Request- information about the current (or last received) job downloaded to the printer.

Inquiry Request (ENQ)

An ENQ character acts as a request for printer status information. You can send an ENQ in front of, in the middle of, or immediately following any packet downloaded to the printer. An ENQ is a command that can be executed as part of a packet or sent on its own (using a communications program). An ENQ is processed immediately. The ENQ character is user defined.

> The ENQ character does not appear as a visible character; however, we are representing the ENQ character as

Inquiry Response

Printer status is returned to the host in a 3-byte (3-character) sequence. The first byte is the non-printable user-defined ENQ character, which is not visible on the response. The second and third bytes are printer status codes. See the ENQ Reference Tables for the meaning of bytes 2 and 3 .

Example
 FAB

The status codes (A and B in this case) are ASCII equivalents to the hexadecimal bits that represent the various types of status responses. This response indicates that the printer is online (Character A) and that there is a stock fault (Character B).

$$
\text { Example } \quad \mathbf{N}_{0} \text { ? ? }
$$

Indicates that this is the first ENQ response since the printer was turned on. Send another ENQ immediately to receive the printer's status.

Example @
Indicates the printer is offline.

The following graphics can be used as a quick reference for the Status of Byte \#2 and Byte \#3. Byte \#1 is the non-printable user-defined ENQ character.

Status Byte \#2
bit $\begin{array}{llllllll}7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$

Status Byte \#3
bit $\begin{array}{lllllllll}7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$

ENQ Reference Table - Byte \#2

Char	Const. OFF	Const. ON	Comp. Failure	Corr. Error	Online Data Error	Busy	Active	Online
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
@	0	1	0	0	0	0	0	0
A	0	1	0	0	0	0	0	1
B	0	1	0	0	0	0	1	0
C	0	1	0	0	0	0	1	1
D	0	1	0	0	0	1	0	0
E	0	1	0	0	0	1	0	1
F	0	1	0	0	0	1	1	0
G	0	1	0	0	0	1	1	1
H	0	1	0	0	1	0	0	0
I	0	1	0	0	1	0	0	1
J	0	1	0	0	1	0	1	0
K	0	1	0	0	1	0	1	1
L	0	1	0	0	1	1	0	0
M	0	1	0	0	1	1	0	1
N	0	1	0	0	1	1	1	0
0	0	1	0	0	1	1	1	1
P	0	1	0	1	0	0	0	0
Q	0	1	0	1	0	0	0	1
R	0	1	0	1	0	0	1	0
S	0	1	0	1	0	0	1	1
T	0	1	0	1	0	1	0	0
U	0	1	0	1	0	1	0	1
V	0	1	0	1	0	1	1	0
W	0	1	0	1	0	1	1	1
X	0	1	0	1	1	0	0	0
Y	0	1	0	1	1	0	0	1
Z	0	1	0	1	1	0	1	0
[0	1	0	1	1	0	1	1
1	0	1	0	1	1	1	0	0
]	0	1	0	1	1	1	0	1
\wedge	0	1	0	1	1	1	1	0
-	0	1	0	1	1	1	1	1
\div	0	1	1	0	0	0	0	0

A "1" indicates the bit is turned on. A "0" indicates the bit is off.

ENQ Reference Table - Byte \#2 (continued)

Char	Const. OFF	Const. ON	Comp. Failure	Corr. Error	Online Data Error	Busy	Active	Online
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
a	0	1	1	0	0	0	0	1
b	0	1	0	1	0	0	0	1
c	0	1	1	1	0	0	0	1
d	0	1	0	0	1	0	0	1
e	0	1	1	0	1	0	0	1
f	0	1	0	1	1	0	0	1
g	0	1	1	1	1	0	0	1
h	0	1	0	0	0	1	0	1
i	0	1	1	0	0	1	0	1
j	0	1	0	1	0	1	0	1
k	0	1	1	1	0	1	0	1
1	0	1	0	0	1	1	0	1
m	0	1	1	0	0	1	0	1
n	0	1	0	1	1	1	0	1
0	0	1	1	1	1	1	0	1
p	0	1	0	0	0	0	1	1
q	0	1	1	0	0	0	1	1
r	0	1	0	1	0	0	1	1
s	0	1	1	1	0	0	1	1
t	0	1	0	0	1	0	1	1
u	0	1	1	0	1	0	1	1
v	0	1	0	1	1	0	1	1
w	0	1	1	1	1	0	1	1
x	0	1	0	0	0	1	1	1
y	0	1	1	0	0	1	1	1
z	0	1	0	1	0	1	1	1
\{	0	1	1	1	0	1	1	1
1	0	1	0	0	1	1	1	1
\}	0	1	1	0	1	1	1	1
~	0	1	0	1	1	1	1	1
Dec 127	0	1	1	1	1	1	1	1

A "1" indicates the bit is turned on. A "0" indicates the bit is off.

ENQ Reference Table - Byte \#3

Char	Const. OFF	Const. ON	Low Battery	Format Error	Waiting to Dispense Label	Ribbon Fault	Stock Fault	Online Error
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
@	0	1	0	0	0	0	0	0
A	0	1	0	0	0	0	0	1
B	0	1	0	0	0	0	1	0
C	0	1	0	0	0	0	1	1
D	0	1	0	0	0	1	0	0
E	0	1	0	0	0	1	0	1
F	0	1	0	0	0	1	1	0
G	0	1	0	0	0	1	1	1
H	0	1	0	0	1	0	0	0
I	0	1	0	0	1	0	0	1
J	0	1	0	0	1	0	1	0
K	0	1	0	0	1	0	1	1
L	0	1	0	0	1	1	0	0
M	0	1	0	1	1	0	0	1
N	0	1	0	0	1	1	1	0
0	0	1	0	0	1	1	1	1
P	0	1	0	1	0	0	0	0
Q	0	1	0	1	0	0	0	1
R	0	1	0	1	0	0	1	0
S	0	1	0	1	0	0	1	1
T	0	1	0	1	0	1	0	0
U	0	1	0	1	0	1	0	1
V	0	1	0	1	0	1	1	0
W	0	1	0	1	0	1	1	1
X	0	1	0	1	1	0	0	0
Y	0	1	0	1	1	0	0	1
Z	0	1	0	1	1	0	1	0
[0	1	0	1	1	0	1	1
1	0	1	0	1	1	1	0	0
]	0	1	0	1	1	1	0	1
\wedge	0	1	0	1	1	1	1	0
-	0	1	0	1	1	1	1	1
\cdots	0	1	1	0	0	0	0	0

A "1" indicates the bit is turned on. A "0" indicates the bit is off.

ENQ Reference Table - Byte \#3 (continued)

Char	Const. OFF	Const. ON	Low Battery	Format Error	Waiting to Dispense Label	Ribbon Fault	Stock Fault	Online Error
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
a	0	1	1	0	0	0	0	1
b	0	1	1	0	0	0	1	0
c	0	1	1	0	0	0	1	1
d	0	1	1	0	0	1	0	0
e	0	1	1	0	0	1	0	1
f	0	1	1	0	0	1	1	0
g	0	1	1	0	0	1	1	1
h	0	1	1	0	1	0	0	0
i	0	1	1	0	1	0	0	1
j	0	1	1	0	1	0	1	0
k	0	1	1	0	1	0	1	1
1	0	1	0	1	0	1	1	0
m	0	1	1	1	1	0	0	1
n	0	1	1	0	1	1	1	0
0	0	1	1	0	1	1	1	1
p	0	1	1	1	0	0	0	0
q	0	1	1	1	0	0	0	1
r	0	1	1	1	0	0	1	0
s	0	1	1	1	0	0	1	1
t	0	1	1	1	0	1	0	0
u	0	1	1	1	0	1	0	1
v	0	1	1	1	0	1	1	0
w	0	1	1	1	0	1	1	1
x	0	1	1	1	1	0	0	0
y	0	1	1	1	1	0	0	1
z	0	1	1	1	1	0	1	0
\{	0	1	1	1	1	0	1	1
\|	0	1	1	1	1	1	0	0
\}	0	1	1	1	1	1	0	1
\sim	0	1	1	1	1	1	1	0
Dec 127	0	1	1	1	1	1	1	1

A "1" indicates the bit is turned on. A "0" indicates the bit is off.

A Job Request returns status information about the most recently processed print job. You can send a job request after an ENQ or batch.

You can send two levels of Job Requests:

- Numeric Error Codes Only (0, 1, or 2)
- Verbose (3 or 4)

Syntax \{J,\#\}

FieId Type	Valid Options	Description
Identifier	J	Job Status Request
request\#	0	Returns ASCII coded strings or
	1	numeric error codes
	2	Returns error number
	3	Returns number of labels printed in batch
	4	

Example
 \{J, 3\}

The job response may not be immediate. If the printer has an error (out of supplies, ribbon problem, etc.), is in pause mode, or has insufficient memory, correct the problem and then resend the job request. If the problem is not corrected, no response is returned. If a formatting error has occurred, the job request will return the status. The printer must first interpret the format and batch data before returning the response.

You may need to press the fib before the job response is returned.

To clear an error, press the left (4) button. An ENQ can also clear errors numbered less than 500. Once the error is corrected, a job request can be sent. The printer cannot accept another job request until the error is resolved.

Job Response

The Job Response varies, depending on the type of request sent to the printer. The following syntax is the response for a Job 0, 1, or 2 request.

Syntax \{J,Status1,Status2,"FMT-1","BCH-2" \}
Status1 These errors stop the print job. Examples include out of stock, supply faults, or data formatting errors. These errors are numbered less than 24 on the "Job Status 0, 1, 2 Response Table," later in this chapter.

Status2 These are errors in the syntax of the MPCL data stream. Printing does not stop, but the information may not print properly. These errors are numbered greater than 24 on the "Job Status 0, 1, 2 Response Table," later in this chapter.

FMT-1/BCH-2 The format or batch number is returned.
Here is an example of a response returned to a $J 0,1$, 2 request:

$$
\text { \{J, 8, 0, "FMT-1", "BCH-2" \} }
$$

Indicates that a portion of the format extends off the tag in format 1, batch 2. Refer to the "Job Status 0, 1, 2 Response Table" later in this chapter for brief explanations for J, 0, 1, 2 requests. In the above example, refer to error 8 for an explanation.

The following syntax is the response for a Job 3 request. You may need to press FEED before the job response is returned.

Syntax $\quad\{\mathrm{J}, "$ Status1 A, B","Status2	
	$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E} ", " \mathrm{FMT}-1 ", " \mathrm{BCH}-2 "\}$

"Status1 A,B"
Status1 A contains the field number, in the format or batch, where an error was found. If the error is not in the format or batch, a " 0 " is returned.

Status1 B contains an error number, which represents the actual printer error. The error numbers can be found in Chapter 8, "Troubleshooting."

Example $\quad\{\mathrm{J}, \mathrm{n} 2,612 \mathrm{n}, \mathrm{\}}$
2 is the field number where an error was found. 612 is the error number, indicating that data is missing or does not match the format definition for that field.

Error numbers found in Status1 B, always have a value equal to or greater than 500 . These are considered very serious errors.
"Status2 A,B,C,D,E" contains the packet type, field type, field number, parameter, and error number.

Status2
A- Packet Type

Status2
B- Field Type
represents the MPCLII packet that the error occurred on. The packet could be Format (F), Batch (B), Check Digit (A), Graphic (G), or Font (W).
represents the MPCLII field that the error occurred on. If the packet has no fields, Status2 A will be replicated. If the error occurs before the field is identified a question mark is sent. Since the batch data is variable, a \mathbf{D} is sent to indicate data.

Status2
C- Field Number

Status2
 D- Parameter

Status2

E- Error Number
"FMT-1/BCH-2"
represents the field number within each packet. The packet header is the first field and each subsequent field is indicated by the field separator.
represents the parameter within the field that the error occurred. The numbering begins after the field identifier.
is the error that coincides with the error numbers presented in Chapter 7, "Troubleshooting."

The format or batch number is returned.
If more than one error occurred then only the most serious error will be acknowledged.

$$
\{J, " ", ~ " F, B, 4,6,33 ", ~ " F M T-1 ", ~ " B C H-2 "\}
$$

Indicates that an error occurred on a bar code (B) field within a format (F) packet. The bar code field is the fourth (4) field in the packet. The error occurred in the sixth (6) parameter of the field. Error number 33 means the bar code density is invalid.
To clear an error, press CLEAR or ENTER, depending on your printer. An ENQ can also clear errors numbered less than 500. Once the error is corrected, a job request can be sent. The printer cannot accept another job request until the error is resolved.

The following syntax is the response for a Job 4 request.

Syntax
printed

total

"FMT-1/BCH-2"
Example
\{ J, printed,total," FMT-1", "BCH-2" \}
the number of tags or labels already printed in the batch.
the total number of tags or labels to be printed in the current batch.

The format or batch number is returned.

8 out of 25 tags or labels have been printed from format number 3.
Use a Job Request 4 when printing in the on-demand mode (purchase optional) with a large number of tags or labels from a single batch. A Job Request 4 may not be accurate if tags or labels are printed in continuous mode, because of the response time involved. A Job Request 4 is not useful in single ticket batches (printing 1 of 1) or multiple single ticket batches.

A batch has to be printing when you send the job request. You cannot use this job request on batches printing formats with incrementing fields.

Job Status 0, 1, 2 Response Table (Status 1 Codes)

Number	Meaning
0	No error
1	Stacker fault
2	Supply problem
4	Hot printhead
5	Printhead open
6	Insufficient memory
7	Ribbon problem
8	Field \#\# extends off tag
9	Field \#\# has a bad font/bar code
10	Field \#\# contains invalid data
11	Field \#\# has a graphic missing
12	Invalid communication channel
13	Invalid file type
14	All communication channels are busy
15	Receive overrun error
16	Receive parity error
17	Receive framing error
18	Receive buffer full
19	Label waiting
21	Bad dots (verifier detected a failure)
23	Low battery
24	Memory configuration packet error

Numbers 25 through 50 are not currently in use.

Job Status 0, 1, 2 Response Table (Status 2 Codes)

Number	Meaning
51	Invalid command
52	Invalid separator value
53	Graphic not found
54	Format for batch not found
55	Quantity/Multiples out-of-range
56	Name descriptor too long
57	Invalid cut value
58	Invalid number-of-parts value
59	Invalid orientation value
60	Invalid thickness value
61	Invalid text field
62	Invalid bar code field
63	Data string too long
64	Invalid data field
65	Row greater than stock length
66	Row greater than format length
67	Column greater than printhead width
68	Column greater than format width
69	Invalid label length
70	Invalid label width
71	Invalid increment/decrement value
72	Identifier out-of-range
73	No field to create format
74	Stop location of a line is out of range
75	Syntax error
80	Can't use offline format for online batch
81	Can't queue graphic batch
82	Can't store online format
83	Can't queue online batch
84	Can't queue online clear command

TROUBLESHOOTING

This chapter explains how to

- print diagnostics labels
- reset the printer
- call Technical Support.

This chapter also provides explanations of your printer's errors.
The errors are classified by type and are listed in order. If you have trouble loading supplies or performing maintenance, refer to you Operator's Handbook.

Follow the directions provided with the error description to correct the problem. If you cannot clear an error, turn off the printer, wait several seconds and then turn on the printer. Call Technical Support if you receive any error message not listed in this chapter.

To clear a data error, press the left (4) button. If a formatting error occurs, the label prints; but data may be missing.

Printing Diagnostics Labels

1. From the Diagnostics menu, select Printer. You will see:
```
Test Label
Sensors
」 V
```

2. From the Printer menu, select Test Label.

After you select Test Label, you will see:

> | Diag Label |
| :--- |
| Test Pattern |

From the Test Label menu, select Diag Label.

MDNARCH MODEL:M9460 S/W:Version X.X $A, 0,0,0,0,0 ; B, 0,0,0,0,01$ C, 0, 0, 0, 0, 0, 미 D,1,0,2\| E, \{, , "', 1,$\},,--,--, O d / O a \mid$ F, 3, 1, 0, 0, 1; G, 0,65,65! M, D, R, 640 M, F, R, 1601 M, I, R, 380 M, R, R, 401 $M, T, R, 10\|M, V, R, 640\|$

MDNARCH MODEL:M9460 S/W:Version X.X	
TOTAL INCHES:	0000119
HI ENERGY INCHES:	0000000
VOLTAGE:	07.44
CONTRAST POT:	N/A
PH RESISTANCE:	(0384) 0339
BAD DOTS:	000
MEMORY:	512KR/1024KN
OPTIONS:	--
SWID:	120660

Two diagnostic labels print and you return to the Test Label menu. The diagnostic labels show the printer's configuration, as well as the model number and software version number. With version 2.8 or greater software, the printer has UNICODE (double-byte) font capability.

See the System Administrator's Guide to learn how to print two other types of diagnostics labels: the test pattern and the grey scale.

Reading Diagnostics Labels

The first diagnostic (test) label shows the model number, software version, and the printer's configuration by packet. See Chapter 2, "Configuring the Printer" for more information about the printer's configuration.

The second diagnostic (test) label shows the model number, software version, total number of inches printed, voltage, print contrast, printhead resistance, number of bad dots, and memory. In the example above:

- The printer has printed 119 inches of regular supplies.
- The printer has printed no linerless (high-energy) supplies.
- No options are set
- CONTRAST POT does not apply.

Resetting Printers

Sometimes the printer receives mixed signals and loses its ability to communicate. If this happens, reset the printer and attempt communication again. To reset the printer, turn off the printer, wait 15 seconds, and turn it back on.

When you turn off the printer, all the information set through the online configuration packets (A-M) is saved. See the sections in Chapter 2, "Configuring the Printer," for more information about each packet.

If You Receive an Error Message

Any time you receive a message that is not described in this manual, or the recommended action does not solve the problem, call Technical Support.

If the PC and Printer Aren't Communicating

If your PC is having trouble communicating with your printer, follow these steps:

- Check any messages that occur at the printer and at the computer. See the following error message listing in this chapter for more information.
- Make sure you are using the correct printer cable.
- Make sure the cable is plugged into the correct port on the computer.
- Compare your printer's communications settings (especially flow control) with the settings on your PC. Your printer and PC communications should match. Print the diagnostics labels to identify the printer's communications settings.
- Make sure the printer is online (ready to receive data).

If all of the above are correct, reset your printer. Try the function again. If you still can't establish communications, call Technical Support.

Calling Technical Support

Technical support representatives are available Monday through Friday during regular business hours. Their number is listed on the back cover of this manual. Follow these steps before you call:

1. Make sure your PC and printer are properly connected.
2. Record any error messages that occurred.
3. Recreate the problem, if you can.
4. Check your port settings. Your problem may corrected simply by changing the communication settings.
5. List any changes that have recently been made to the system. Try to record what you did when the problem occurred.
6. Reset your printer. For information on resetting your printer, see "Resetting Printers."
7. Reboot your computer. Refer to your computer documentation for specific instructions.
8. Print the Diagnostics labels. See "Printing Diagnostics Labels."

If these steps do not solve the problem, call Technical Support.
Have the following information ready before you call:

- computer brand name and type of software or terminal brand name and model
- Monarch printer model
- printer serial number
- support agreement, contract number, or invoice information
- customer number

Additional Diagnostics Information

For detailed printer diagnostics information, refer to your Operator's Handbook. See Chapter 7, "Status Polling," for information on requesting printer and job status. See the following error message listing for more information.

Data Errors

A data error indicates that incorrect data was received from the host, causing the printer to ignore the entire print job. After checking the packet and correcting the problem, transmit the print job again.

The following is a list of data errors. These errors occur because data in the format, batch, check digit, font, or graphic packet is invalid.

Format Errors

Error Description Code

001 Format ID number must be 1-99.
002 Name must be 1-8 characters inside quotes or a printer-assigned name ("").

Action must be A (add) or C (clear).
004 Supply length is invalid (maximum is 4"). See "Defining the Format Header" in Chapter 3 for valid lengths.

005 Supply width is invalid (maximum is 2"). See "Defining the Format Header" in Chapter 3 for valid widths.

006 Storage device must be R (volatile RAM), T (temporary storage), or \mathbf{F} (flash memory).

007 Unit of measure must be E (English), M (Metric), or G (Dots). See "Defining the Format Header" in Chapter 3 for information.

010 Field ID number is outside the range 0-999.
011 Field length exceeds 2710.
012 Row field position is greater than the maximum stock dimension. See "Defining Text Fields" in Chapter 3 for valid row lengths.

013 Column field position is greater than the maximum stock dimension. See "Defining Text Fields" in Chapter 3 for valid column widths.

014 Font style is invalid. See "Defining Text Fields" in Chapter 3 or Appendix B, "Fonts," for more information.

015 Character rotation must be 0 (0 degree), 1 (90 degree), 2 (180 degree), or 3 (270 degree). See "Defining Text Fields" in Chapter 3 for information.

016 Field rotation must be 0 (0 degree), $\mathbf{1}$ (90 degree), 2 (180 degree), or 3 (270 degree). See "Defining Text Fields" in Chapter 3 for information.

017 Field restriction must be V (variable) or \mathbf{F} (fixed).
018 Invalid text code page selection. Must be 0 (Monarch internal), 1 (ANSI), 2 (DOS Page 437), 3 (DOS Page 850), 102 (UNICODE), 437 (DOS Page 437), 850 (DOS Page 850), 852 (Latin 2), 855 (Russian), 857 (Turkish), 860 (Portuguese), 1250 (Latin 2), 1251 (Cyrillic), 1252 (Latin 1), 1253 (Greek), 1254 (Turkish), 1255 (Hebrew), 1256 (Arabic), 1257 (Baltic), or 1258 (Vietnamese).
See "Defining Text Fields" in Chapter 2 for more information.

Vertical magnification must be 1-7 or for TrueType/Scalable fonts, use 4-250 (the point size).

Horizontal magnification must be 1-7 or for TrueType/Scalable fonts, use 4-250 (the point size).

Color must be B, D, O, R, or W. See "Defining Text Fields" in Chapter 3 for more information.

Intercharacter gap must be 0-99 dots.
Field justification must be B (balanced), C (centered), E (end), L (left), or \mathbf{R} (right). See "Defining Text Fields" in Chapter 3 for more information.

Data length is too long.
Bar code height must be at least 1 (English), 2 (Metric), 1 (Dots), or is not within the supply dimensions.

031	Human readable option must be
	$\mathbf{1}$
	no CD or NS
$\mathbf{5}$	NS at bottom, no CD
$\mathbf{6}$	CD at bottom, no NS
$\mathbf{7}$	CD and NS at bottom
	$\mathbf{8}$
	no text

032 Bar code type is invalid. See "Defining Bar Code Fields" in Chapter 3 for valid options.

033 Bar code density is invalid. See "Defining Bar Code Fields" in Chapter 3 for the bar code density chart.

040 Line thickness must be 0-99 dots.
041 Line direction must be $\mathbf{0}, \mathbf{9 0}, \mathbf{1 8 0}$, or $\mathbf{2 7 0}$.
042 End row is invalid. Line segment or box end row is defined outside of printable area.

043 End column is invalid. Line segment or box end column is defined outside of printable area.

044 Dot pattern for line or box must be "".
045 Line length is defined beyond the maximum length. See "Defining Line Fields" in Chapter 3 for valid lengths.

046 Line type must be \mathbf{S} (segment) or \mathbf{V} (vector).

Batch Errors

Error Description
 Code

101 The format referenced by batch is not in memory.
102 Print quantity is outside the range 1-24.
104 Batch mode must be \mathbf{N} (new) or U (update).
105 Batch separator in a batch control field must be 0 (Off).

Option Errors

Error Description Code

200 Option number must be 2, 4, 30, 31, 42, 50, 51, 52, or 60.

201 Copy length is outside the range 1-2710.
202 Copy start position must be 1-255.
203 Destination start position must be 1-255.
204 Source field must be 0-999.
205 Copy type must be 1 (copy after rules) or 2 (copy before rules).

206 Increment/Decrement selection must be I (increment) or D (decrement).

207 Incrementing start position must be 0-2710.
208 Incrementing end position must be 0-2710.
209 The incrementing amount must be 0-999.
210 Security value for a PDF417 bar code must be 0-8. Correct the value and resend the format to the printer.

211 Narrow element value is less than 1 or greater than 99. Correct the value and resend the format to the printer.

212 Wide element value is less than 1 or greater than 99. Correct the value and resend the format to the printer.

213 Dimension must be 1-30 for a column or 3-90 for a row on a PDF417 bar code.

214 Truncation code must be S (standard) or T (truncated bar code).

215 Aspect code must be Columns) or \mathbf{R} (rows).
216 Option definition must be \mathbf{S} (set) or \mathbf{T} (template).
217 Input device device must be D (Default), H (Host), K (Keyboard), \mathbf{N} (None), or S (Scanner).

218 Pad direction must be \mathbf{L} (from left) or \mathbf{R} (from right).
219 Pad character is outside the range 0-255.
220 Check digit selection must be \mathbf{G} to generate check digit.
221 Primary or secondary price format is outside the range 1-15.

222
Data type restriction is outside the range of 1-6.
223
Option is not valid for the field.
224 Bar code intercharacter gap must be 0-99 dots. (This is also known as the additional character gap when using Option 50, Defining Bar Code Densities.)

Online Configuration Errors

Error Description Code

251 Power up mode must be 0 (online).
252 Language selection must be 0 (English).
253 Batch separator code in a system setup packet must be 0 (off).

254 Slash zero selection must be 0 (standard zero).
255 Supply type must be 0 (black mark) or 1 (die cut).

256	Printhead energy must be $\mathbf{0}$ (standard supplies), $\mathbf{1}$ (fax paper), or 2 (linerless/synthetic supplies).
257	Feed mode must be $\mathbf{0}$ (continuous) or $\mathbf{1}$ (on demand - if option is used).
258	Supply position is outside the range.
259	Contrast adjustment must be 28-40 dots.
260	Print adjustment must be-99-99 dots.
261	Margin adjustment must be -99-99 dots.
262	Speed adjustment must be 0 .
263	Primary monetary symbol is invalid.
264	Secondary symbol selection must be $\mathbf{0}$ (none) or $\mathbf{1}$ (print secondary sign).
265	Monetary decimal places must be 0-3.
266	Character string length in the control characters packet must be 5 (MPCL control characters) or 7 (ENQ/IMD command character)
267	Baud rate selection must be 0 (1200), 1 (2400), 2 (4800), 3 (9600), 4 (19200), 5 (38400). Resend the communication settings packet.
268	Word length selection must be $\mathbf{0}$ (7 bits) or 1 (8 bits). Resend the communication settings packet.
269	Stop bits selection must be $\mathbf{0}$ (1 bits), or $\mathbf{1}$ (2 bits). Resend the communication settings packet.
270	Parity selection must be $\mathbf{0}$ (none), $\mathbf{1}$ (odd), or 2 (even). Resend the communication settings packet.
271	Flow control selection must be $\mathbf{0}$ (none), $\mathbf{1}$ (DTR), 2 (CTS/RTS), or 3 (XON/XOFF). Resend the communication settings packet.

272	Invalid code page selection. Must be 0 (Monarch internal), 1 (ASCII), 2 (DOS Page 437), 3 (DOS Page 850), 4 (1250-Latin 2), 5 (1251-Cyrillic), 6 (1252- Latin 1), 7 (1253- Greek), 8 (1254- Turkish), 9 (1255Hebrew), 10 (1256-Arabic), 11 (1257-Baltic), 12 (1258- Vietnamese), 13 (852- Latin 2), 14 (855Russian), 15 (857-IBM Turkish), 16 (860- DOS Portuguese) or 19 (UNICODE).
282	RS232 Trailer string is too long. Use a maximum of 3 characters.
283	ENQ Trailer string is too long. Use a maximum of 3 characters.
284	The buffer type must be \mathbf{T} (Transmit), R (Receive), I (Image), F (Format), or D (Downloadable Fonts).
285	The storage device type in the memory configuration packet must be \mathbf{R} (volatile RAM).
286	The buffer size is invalid.
287	The printhead width must be $\mathbf{0}$.
290	Action must be $\mathbf{0}$ (disable), or $\mathbf{1}$ (enable) for the backfeed control packet or the printer is active.
291	Dispense position must be $\mathbf{0}$ or $\mathbf{1 0} \mathbf{- 2 0 0}$ dots and the backfeed distance is greater than the dispense position or the printer is active.
292	Backfeed distance must be $\mathbf{0}$ or $\mathbf{1 0 - 2 0 0}$ dots.

Check Digit Errors

Error Description Code

310 Check digit scheme number must be 1-10.
311 Modulus must be 2-11.
$314 \begin{aligned} & \text { Check digit algorithm must be } \mathbf{D} \text { (sum of digits) or } \mathbf{P} \\ & \text { (sum of products). }\end{aligned}$

Graphic Errors

Error Description
 Code

325 Duplicating direction must be $\mathbf{0}$ (insert after) or $\mathbf{1}$ (insert before) in duplicate fields for graphics.

327 Amount of row adjustment must be 0-999 dots in duplicate fields for graphics.

328 Duplicate count must be 0-999.
340 Bitmap line encoding must be \mathbf{H} (hex) or \mathbf{R} (run length).
350 Font selector must be 1-9999.
351 Font data length must be 68-16384.
352 Insufficient font memory is available for the downloaded font.

400 The character immediately following \{ is invalid.
404 The number or string that is currently being processed is too long.

Communication Errors

Error Description Code

409 The printer memory is full. Delete unnecessary formats or graphics from memory. If you are using a graphic file that is very large, consider using another mapping method (such as run length encoding) to reduce the required memory.

410 Parity on the printer does not match the parity on the host. Check the parity setting under SETUP options.

411 Framing error. The printer cannot communicate with the host. Make sure the host is turned on, communication cables are connected correctly, port settings are correct, and communications are active. Check the baud rate, word length, and stop bits to make sure they match those at the host. Do not toggle between Microsoft Windows and MS-DOS while using the COPY command, or you will receive a framing error. Exit Windows before using the COPY command. Re-transmit the data.

412 There is a problem with flow control between the printer and the host. Make sure the printer and the host flow control settings match (both are DTR or both are XON/XOFF). If the error persists, call Technical Support.

413 Online receive queue is full. Check your printer's XON/XOFF or DTR SETUP values to be sure there isn't a flow control problem.

414 The internal keyboard buffer is full or you need a new keypad. Call Technical Support.

415 The buffer size you defined exceeds the total available in your machine.

423 Internal software error. Call Technical Support.

Data Formatting Failures

Formatting errors indicate that a field will print incorrectly. After you have checked the data stream and corrected the data, retransmit the format and batch.

For these errors, the batch still prints, but the field, font, bar code, or density may be incomplete, missing or contain incorrect data.

574 No CD scheme or room for CD. The CD scheme in the batch does not fit the format or the field contains blanks.

575 The graphic included in your format could not be found.
611 Font, bar code or density is invalid. The font, bar code or density in the batch does not fit the format.

612 The data in this line of the batch is either missing or does not match the format.

613 Reference point off tag.
614 Portion of field off tag. There may be an invalid character in the packet. Make sure you did not enter O for \varnothing.

616 Dot shifting failed. A bad dot falls on a bar code that cannot be shifted. Call Technical Support.

618 Magnification must be 1-7.
621 An error occurred opening the TrueType font file. Select a different font to download. If the error message persists, call Technical Support.

Not enough memory to create the downloaded TrueType characters in the scalable (vector) fonts buffer. Reconfigure the printer's memory and increase the scalable (vector) fonts buffer. Resend the font, format, and batch packet after reconfiguring the memory. See "Reconfiguring Memory" for more information. If the error message persists, call Technical Support.

Machine Faults

These errors occur when there is a problem with the printer.
703 The printer sensed a calibration of different-sized black marks. Make sure the correct supply is loaded.

704 Printer has not sensed a supply mark within the specified number of inches or is out of supplies. Check the supply tracking, supply marks, black mark sensor position, and supply roll for binding. Press the (4) button under the x icon to clear the error. Change supply.

750 Printhead is overheated. Turn off the printer to let the printhead cool. If the error persists, call Technical Support.

751 Printer did not sense a black mark when expected. The supply may be jammed.

For these errors, Check the

- supply tracking
- supply marks
- black mark sensor position
- supply roll for binding.

If the error continues to appear, change the supply.
752 Printer sensed a mark in the wrong place.

753 Printer sensed a mark that is too long.
756 The printer is out of supplies. Load supplies.
757 Load supplies. The calibrated supply length differs by plus or minus .25 inches from the format.

758 Check supply. Either the supply is not seen, or the on-demand sensor is broken (purchase optional). Check for a label jam. Clear the supply path or reload supplies. This error may occur if you remove a label too quickly in on-demand mode. The printer does not recalibrate after this error.

762 Low battery. Recharge the battery.
763 Waiting to dispense label. Press the button.

791 The printer has an error pending. Turn off the printer. Wait two seconds and turn it back on. Resend the packets. If the problem continues, call Technical Support.

Flash Memory Errors

These errors occur when there a problem occurs with the printer's flash memory.

800 A directory in flash memory is full.
801 Flash memory is full.
802 A directory in flash memory cannot be found..
803 There is no directory in flash memory.
810 A file in flash memory is not open.
811 A file in flash memory is already open.
812 The file in flash memory is full.
813 You cannot access flash memory.
820 An error occurred in the flash program.
821 An error occurred while erasing flash memory.
822 There is a flash ID error.

Hard Printer Failure Errors

These errors are hard printer failures. Call Technical Support if you receive these messages.

904 No memory for native layer.
907 Low RAM error.
909 RAM corrupted.
911 Version string mismatch.
SYSTEM ERROR \#\# can be:
VECTOR \#\# 2 Bus Error
3 Address Error
4 Illegal Instruction
5 Zero Division
6 CHK, CHK2 Instructions
7 TRAP Instructions
8 Privilege Violation
9 Trace
10 Line 1010 Emulator
48 User-defined vectors (48-255)
This error is fatal. If you receive it, reset and/or reflash the printer. If the error persists, call Monarch at the number listed on the back of this manual for instructions. If they determine you should send the printer back to Monarch, use the original packaging and the following address:

Monarch ERC
200 Monarch Lane
Door 39
Miamisburg, OH 45342
The warranty does not apply if you do not follow these instructions.

PRINTER OPTIMIZATION

This appendix provides information on how to improve your printer's performance by

- adjusting the print quality.
- reducing the imaging time for printing.
- providing general tips and hints for designing formats.

This printer uses "smart imaging" to image and print fields on supplies. Smart imaging remembers the exact boundaries and locations of each field and places a boundary box (white space) around each field. When a field changes that particular boundary box is cleared and the new field data is imaged. However, the new field data may require a larger boundary box than the previous field did. In some cases, neighboring fields that do not change may be covered with white space from the changing field's boundary box.

Adjusting the Print Quality

Many factors affect print quality: type of supplies, print contrast, and the type of printer's application. The type of supply should match the printer's application.

- Using premium supplies reduces smudged images, hard to read labels, and faded print. Supply type, print speed, and print contrast work together to improve the print quality of labels. Contact your Monarch Representative for more information.
- If the print quality is too light or too dark, adjust the print contrast. The correct contrast setting is important because it effects how well your bar codes scan and how long the printhead lasts.

Be sure to check the print quality of bar codes with a bar code verifier or scanner. If you do not have a verifier or scanner, check the bar code visually. A bar code that is IN SPEC will have complete bars and clear spaces. Small alphanumeric characters will look complete. A bar code that is IN SPEC may not look as good as one that is too dark, but it will have the highest scan rate.

For highest scan rates, make sure there is adequate white space before and after the bar code. Also, a darker bar code does not mean it will scan better.

Reducing Imaging Time

Imaging time is the time it takes the printer to image the data for the first label after the printer receives the format and batch packet. There are several ways to reduce the imaging time: send formats and configurations once, use a batch quantity of zero, or update batch fields.

- If the formats use the same check digit scheme, you only need to send the check digit scheme once.
- Send formats once and use the batch update field to change information on the label. Using a batch update field reduces the imaging time, because only the fields that change are imaged. All other fields remain the same as the last queued batch.
- Use the batch quantity zero method when your application requires operator intervention to enter data. While the operator is entering data, the previous field is sent with a batch quantity of zero. The printer images the field, but does not print it. After the operator enters the data for the last field, the batch quantity can be specified. The last remaining field is imaged, and the label prints almost immediately.

To pre-image a label:

1. Send the format and a batch header in one file. The first time you send the batch header, use the parameter \mathbf{N} (new batch), and the parameter $\mathbf{0}$ for (zero quantity).

Example $\{B, 1, \mathrm{~N}, 0$: $\}$

The printer images constant text, line, box, and graphic fields, but does not print them.
2. Input data for each field, and send it with a batch header using the parameter \mathbf{U} (update) and a quantity of zero. When the printer receives the data, it immediately images the field, but does not print it.

Example

```
{B,1,U,0 |
1,"RODGER DIST CTR" | }
{B,1,U,0 |
2, "8292" | }
```

At this time, the printer is imaging all associated fields, including fields that copy from other fields.
3. Repeat step 2 for each field except the last one.

```
{B,1,U,0 \
3,"BROADWAY" | }
{B,1,U,0 \
4,"555 WEST OAK AVE." | }
```

4. For the last field, input data and send it with the quantity of labels you want printed. When the printer receives input for the last field, it immediately prints the labels.
```
Example {B,1,U,10 }
    5,"DAYTON, OHIO" | }
```


Increasing Throughput

Reducing the imaging time increases throughput. You can also increase the baud rate to increase the transmission time and increase throughput. Make sure the communication settings at the printer match those at the host.

General Format Tips and Hints

The following tips and hints are helpful to keep in mind when designing MPCLII formats.

With Formats

If you want to modify your format fields, check digit fields, and configuration commands, use the optional entry method. This method enables you to reset only the parameters you want to change. Commas act as placeholders for unchanged parameters. The optional entry method reduces file size and increases the speed at which files are sent to the printer.

With Packets

Leave parameters blank that you do not need to change when sending online configuration packets.

You can group fields with similar parameters. For example

```
T,1,10,V,250,50,1,1,1,1,B,C,0,0 ।
T,2,15,,,75 ;
T,3,,,,100 \
```

The first text field sets all the parameters for that field. The second text field's number of characters and column location changes from what was defined in the first field. In the third text field, only the column location is changed. This method can be used on bar code and constant text fields as well.

You should understand the basics of each field before using this method.

After you modify any fields or parameters with the optional entry method, resend the format, batch, or configuration packet to the printer.

With Bar Codes

Be careful when rotating or placing a UPC/EAN bar code with human readable characters, because the bottom reference point is at the bottom of the bars, not at the bottom of the human readable characters.

With Fields

Data that remains the same for each label should be in a constant text field. Data that varies for each label should be in a text field.

Check for trailing spaces in text or constant text fields if you receive a "field off tag" error. An easy way to see trailing spaces is to print the field in the reverse font.

Make sure if you magnify a field, it does not go off the label or cover another field. Magnifying a field increases the distance between the printed character and the edge of the cell.

SAMPLES

This appendix contains sample formats. You can customize any of these formats to meet your needs.

The samples pictured are oriented as if you are looking down at the keypad, watching labels come out of the front of the printer, as shown below.

Sample UPCA Format Packet

Sample Batch Packet

SAMPLE FORMAT

TEXT FIELD

Sample MaxiCode Packets

MaxiCode is a two-dimensional bar code developed by UPS (United Parcel Service, Inc.). Data must be defined in a specific way for UPS. Refer to the Guide to Bar Coding with UPS or the AIM MaxiCode Specification for more details about data requirements.

The printer supports modes 0, 1, 2, and 3. Contact Monarch for information about additional MaxiCode modes.

Mode	Description
0	Obsolete
1	Obsolete
2	Structured Message
3	Structured Message
4	No Known Application
5	No Known Application
6	No Known Application

You can select which mode to use in the bar code field or allow the printer to auto-select the mode (0,2 , or 3) based on your data. See "Defining a Bar Code Field" for more information. MaxiCode automatically pads data with the "!" character.

MaxiCode does not support the NULL character.

Modes 2 and 3 are defined by the way the postal code, class of service, and country code fields are arranged. (The postal code, class of service, and country code are required fields.) Begin with the message header, then the primary data (15 characters), followed by the secondary message (up to 78 characters). Or, begin with the primary data, then the message header, followed by the secondary data. If the postal code data characters are all numeric then the MaxiCode symbol is set to Mode 2. If the characters are alphanumeric, or only contain ASCII characters 65 to 90 , then the MaxiCode symbol is set to Mode 3.

If you receive an error 612, check your MaxiCode data. You may have not correctly structured or left out one of the three required fields (postal code, class of service, and country code) or the "~029" character.

Mode O (Obsolete) Sample


```
B, N1
1, "450660000" ا
C, " 001 " 8 "
C, " \([\) ) \(\sim 030 " 1\)
,""1Z12345678~029"
C, "UPSN~029"
, "12345A~029" |
C', "070~029"
"~029"
, "1/1~029", !
"15~029"
"Y~029"
, " 60 SADDLEBROOK CT. ~029"
, " DAYTON~029"
, "OH~030"
, " \(\mathrm{OH} \sim 030\) "
```

MaxiCode bar code (33)
Batch header
Postal code-zip code (This field determines Mode) Country code
Class of service
Message header Transportation header
Tracking number
Origin carrier SCAC
UPS shipper number
Julian day of pickup
Shipment ID (empty)
Package count
Weight (Ib.)
Address validation
Street address (empty) City (empty)

A-4 Samples

Mode 2 Sample


```
B, í, 93', V', \(020,020,33,7,0, \overline{8}, \mathrm{~L}, 0\) i
\{B,1,N,1
```



```
C, "068100000~029"
C, " 840~029"
```



```
C', "UPSN~029"
C,"12345E~029" |
C, " \(089 \sim 029\) "
C, "~029"
C, " \(1 / 1 \sim 029\) "
C', "10~029"
C', "Y~029" "
C', "~029""
C, "CT~030"
```

MaxiCode bar-code (33)

Message header
Transportation header
Postal Code
(This field determines Mode)
country code
Class of service
Tracking number
Origin carrier SCAC
UPS shipper number
Julian day of pickup
Shipment ID (empty)
Package count
Weight (lb.)
Address validation
Street address (empty)
City (empty)
State
EOT

Mode 3 Sample

```
\(\left\{F_{1} 1, A, R, E, 200,200, " M A X I=M 3 "\right.\)
B, 1, 93, V, \(020,020,33,7,0, \overline{8}, L, 0\) i
\{B, \(1, N, 1\)
```



```
C, " \(01 \sim 02996\) "
C, "M5E1G45~029"
C, " \(124 \sim 029\) "
C,","1Z12345679~029"
C', "UPSN~029"
C, "12345E~029" |
C', "089~029"
C, "~029"
C, " \(1 / 1 \sim 029\) "
C, " \(10 \sim 029\) "
C, "Y~029" |
C, "~029"
C, "TORONTO~029"
C, "ON~030"
C', "~004" \(\}^{\prime}\)
```

MaxiCode bar-code (33)
Message header
Transportation header
Postal Code
(This field determines Mode)
country code
Class of service
Tracking number
Origin carrier SCAC
UPS shipper number
Julian day of pickup
Shipment ID (empty)
Package count
Weight (lb.)
Address validation
Street address (empty)
City (empty)
State
EOT

A-6 Samples

HangTag Example

$\{B, 1, N, 1 \mid E, 0,0,1,1,0,1\}$

0047896320
$045 \quad 12099$
006541131158
$\$ 49.99$

Tag Example


```
R, 1, "028400067362"
C, 20, 34, 0, 50, 8, 8, A, L, 0, 0, "*SALT FREE*", 11
C, \(84,45,0,50,14,14\), A, L', \(0,0,0\) " \(\$ 1.19 ", 1\)
```


Sample Batch Packet

$\{B, 1, N, 1 \mid E, 0,0,1,1,0,1\}$

PEANUTS
SALT FREE

Label Example

$\begin{aligned} & \{F, 1, A, R, E, 300,150, ~ " 1 L A B 1530 " 1 \\ & C, 100,90,0,50,10,10, A, L, 0,1, " B A \end{aligned}$
C, 230,128, 0, 50, 12, 10, A, L, 0, 1, "\$5.99", 1i
B, 1, 9, F, $75,55,4,7,40,8, L, 11$
$\mathrm{R}, 5, \mathrm{~N}$
R, 1, "031535512"'
T, 2, 9, V, 125, 67, 0, 50, 8, 8, A, L, 0, 1, 11
R, 4, 1, 1, 9, 1, 1

Sample Batch Packet

$\{\mathrm{B}, 1, \mathrm{~N}, 1 \mathrm{E}, 0$, $0,1,1,0,11$ 1, "AAAAAAAA 1 2, "KKKKKKKKK" 1$\}$

Receipt Format Example

Sample Batch Packet

$\{B, 1, N, 1 \mid E, 0,0,1,1,0,1\}$

KRAMER'S

GARAGE SALE

Label Sample 2

```
\{F, \(1, A, R, E, 110,200, " 1 L A B 2011 " 1\)
\(\mathrm{C}, 92,70,0,50,7,7, A, L, 0,0, " P R E T Z E L S ", 11\)
```



```
R,'1,"028400067362 "'
\(\underset{\text { C }}{\text { C }}\), \(18,105,0,50,10,10, A, L, 0,0, " \$ .79\) " , 11
```


Sample Batch Packet

$\{B, 1, N, 1 \mid E, 0,0,1,1,0,1\}\}$

Label Sample 3

Sample Batch Packet

A-10 Samples

FONTS

Our printers support two types of fonts: Bitmapped (traditional printer fonts such as Standard and Reduced) and Scalable/TrueType® (Font 50). This appendix gives a brief overview of each type of font and how your printer interprets fonts. It also shows examples of the fonts loaded in your printer.

Number	Font Size and Appearance	Type of Spacing	\# of Dots Between Characters
1	Standard	monospaced	$3(203 \mathrm{dpi})$
2	Reduced	monospaced	$1(203 \mathrm{dpi})$
3	Bold	monospaced	$3(203 \mathrm{dpi})$
4	OCRA-like	monospaced	$3(203 \mathrm{dpi})$
5	HR1	monospaced	$2(203 \mathrm{dpi})$
6	HR2	monospaced	$1(203 \mathrm{dpi})$
10	CG Triumvirate™ Bold (9 pt.)	proportional	varies w/ each letter
11	CG Triumvirate $(6$ pt. $)$	Typeface	proportional
50	EFF Swiss Bold	varies w/ each letter	

* Fonts 5 and 6 are for numeric data only. The CG Triumvirate ${ }^{T M}$ typefaces support only the ANSI and DOS Code Page 437 and 850 Symbol Sets. Font 50 is a TrueType font, EFF Swiss Bold. These samples were printed using the Internal Symbol set.

Bitmap Font Information

The Monarch bitmap fonts are either monospaced (each character occupies the same amount of space) or proportional (each character is a different height and width). Use monospaced fonts for price fields and data you want to list in a column. With proportionally spaced fonts, you may be able to place more characters on a line. However, you may need to experiment with these fonts and adjust field measurements in your format. The bitmapped fonts (either monospaced or proportional) appear jagged when magnified.

Standard Font

ABCDEFGHIJKLM NOPORSTUVWXYZ abcdefqhijklm nopqrstuvwxyz 0123456789 ：；＜＝＞？
 ［1］～\｛ ；～Cüéäáá ceèèīíAAEæたôöóa
 －ح1／1／：《»øøのß＠TM \＄£ ¥

ABCDEFGHIJKL
NOPORSTUVWXYZ
abcâefqhijk 1 m
noparstuvwxyz
0123456789 ：；＜＝＞？

－ー1／1／＜《»DøのßのTM
\＄EMPRLRGGREWB干

Bold Font

Reduced Font

ABCDEFGHIJKLM
NOPDRSTUYHYYZ
abcdefghl．jkln nopers tuvwxyz 0123456789：；$=>$ ？
 $[\]^{\wedge},\{1\}$ Cluéâảàà

$$
\begin{aligned}
& \text { ABEDEFCHIJKLM } \\
& \text { NDPERSTUNAKYZ } \\
& \text { abcdefghijklm } \\
& \text { napars tuwwxyz } \\
& 0123456789:<=>\text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ceateri haicomatou }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$

ABCDEFGHIJKLM NOPQRSTUVUXYZ 0123456789＠

\＄EMDFPLK K M SR

23456789＠

CG Triumvirate(tm) Typeface Bold

ABCDEFGHIJKLM NOPQRSTUVWXYZ
 abcdefghijklm nopqrstuvwxyz 0123456789:; < = > ?
 !"\#\$\%\&'()* + ,../_[1]" \{ \}~Çüéääàå@ çêëèïiïÄÅÉæÆôöòû ùÿÖÜcPtfáióúñN ${ }^{\wedge}{ }^{\circ}$ ¿

ABCDEFGHIJKLM NOPQRSTUVWXYZ abcdefghijklm nopqrstuvwxyz 0123456789:; < = > !"\#\$\% \& (0* + ,-./-[1] ` \{ \} Çüéáäàå © ùyöÜcPtfáíoúñ̃№ ${ }_{i}$

EFF Swiss Bold

CG Triumvirate(tm) Typeface

ABCDEFOHIJKLM

 NOPQRSIUVWXYY abcdefofllkim nopqrstuwwxyz 0123456789: < = > ? [1]"\{|\}"Coéatada glet madematobdú

ABCDEFOHIJKLM NOPQRSTUWWXYZ
abcdefthimim
nopqrauweng
0123456789: $<=>$?
1"
[1]" $\{\mid\}$ " gathat
qte:mhktaftodũ

EFF Swiss Bold 9 pt
EFF Swiss Bold 15 pt
EFF Swiss Bold 20 pt

Monospaced Font Magnification

Monospaced characters occupy the same amount of space within a magnification. Use monospaced fonts for price fields and data you want to list in a column. Decide how wide and tall you want the characters to appear on the labels. The following two tables show the width and height of each of the monospaced fonts after magnification.

This table includes the default (3 dots for Standard, 1 dot for Reduced, 3 dots for Bold) spacing.

	Width Mag.	Standard	Reduced	Bold
	Units	Character Width Sample	Character Width Sample	Character Width Sample
1x	1/100 in. $1 / 10 \mathrm{~mm}$ Dots	$\begin{array}{\|ll} 8.37 & \\ 21.26 & \\ 17 & \text { A } \end{array}$	$\begin{aligned} & 3.9 \\ & 9.9 \\ & 8 \end{aligned}$	$\begin{array}{\|ll\|} \hline 13.3 & \\ 33.78 & \\ 27 & \text { A } \end{array}$
7x	1/100 in. $1 / 10 \mathrm{~mm}$ Dots	$\begin{array}{\|l\|} \hline 49.75 \\ 126.37 \\ 101 \end{array}$	$\begin{aligned} & 24.63 \\ & 62.56 \\ & 50 \end{aligned}$	$\begin{array}{\|l} \hline 84.24 \\ 214 \\ 171 \end{array}$

Only the 1 x width can be scanned with the OCRA-like font. Using a printhead with 203 dpi, the character widths are as follows: 7.9 (English), 20.1 (Metric), and 16 (Dots).

To calculate other font widths, multiply the font dots (14 dots for Standard, 7 dots for Reduced, 24 dots for Bold) by the magnification and add the default spacing (3 dots for Standard, 1 dot for Reduced, 3 dots for Bold) between characters.

Example

14 (Standard font dots) x 5 (magnification) $=70+3$ (default spacing between characters). There are 73 dots in the Standard font at $5 x$.

```
1x
7x
```

Standard	A	75.9
$1 / 100 \mathrm{in}$.	10.8	192.8
$1 / 10 \mathrm{~mm}$	27.4	154
dots	22	

Reduced	6.9	48.28
$1 / 100 \mathrm{in}$.	17.5	122.6
$1 / 10 \mathrm{~mm}$	14	98
dots		

OCRA-like (1x only)

$1 / 100 \mathrm{in}$.	11.8
$1 / 10 \mathrm{~mm}$	30
dots	24

A

Proportional Font Magnification

Each character in a proportionally spaced font is a different width. You may be able to place more characters on a line using proportionally spaced fonts. You may want to experiment with these fonts and adjust field measurements in your format as needed. The following tables provide height and width magnification of sample characters.

CG Triumvirate ${ }^{\text {TM }}$ Typeface Bold (9 pt.)

Width Mag.		Minimum		Average		Maximum	
1x	1/100 in.	1.48		6.4		10.8	
	1/10 mm	3.76		16.26		27.4	
	Dots	3	i	13	L	22	W
7x	1/100 in.	10.3		44.8		75.9	
	1/10 mm	26.2		114		192.8	
	203 Dots		E			154	

To calculate other font widths, multiply the font dots (3 dots for Minimum, 13 dots for Average, 22 dots for Maximum) by the magnification.

Example

13 (Average font dots) $\times 5$ (magnification) $=65$ dots in an average letter of the CG Triumvirate ${ }^{\text {TM }}$ Typeface Bold font at $5 x$.

Height Magnification
1x

CG Triumvirate ${ }^{T M}$
W
Typeface Bold

$1 / 100$ in.	8.87	56
$1 / 10 \mathrm{~mm}$	22.5	158
dots	18	126

CG Triumvirate ${ }^{T M}$ Typeface (6 pt.)

Width Mag.		Minimum		Average		Maximum	
1x	1/100 in.	. 99		2.96		5.9	
	1/10 mm	2.51		7.52		15	
	Dots	2	i	6	เ	12	w
7x	1/100 in.	6.9		20.7		41.4	
	1/10 mm	17.5		52.6		105.2	
	Dots	14	-		\square		$\underline{5}$

Height Maginfication 203 DPI

CG Triumvirate ${ }^{\text {TM }}$ Typeface	w	
1/100 in.	5.9	41.38
1/10 mm	14.99	105.1
dots	12	84

Scalable/TrueType® Font Information

The scalable font characters print smoothly, without the jagged edges you may see when bitmapped fonts are magnified.
Scalable/TrueType fonts are proportionally spaced (field width varies with each letter).

Format Considerations

When defining formats with scalable/TrueType fonts, keep the following in mind:

- While field rotation can be set to any value (0-3), character rotation must be set to 0 .
- The slashed zero is not available.
- The minimum point size for all scalable/TrueType fonts is 4 .
- The maximum point size for Font 50- EFF Swiss Bold and downloadable TrueType fonts is 255.
- Field color (O-transparent overlay) allows closer field placement (fields can overlap) without the loss of data.
- To use large point sizes (greater than 60), you must reconfigure memory and increase the size of the scalable (vector) fonts buffer.

The height and width magnification are defined in point size. 72 points = one inch. One inch = cell size. The cell size is the built-in space around the individual characters of the scalable font. If height and width magnification are not set to the same point size, the printed characters look tall and thin or short and thick, which allows for greater flexibility in the appearance of the font.

The 72 point CG Triumvirate ${ }^{\text {TM }}$ Typeface, Bold sample shows the one inch cell size.

6pt Sample
 10pt Sample
 24pt Sample

48pt Sample
72ptSample

Downloading Fonts

The MONARCH® MPCL Toolbox (Soft Font Utility) is available on our Web site (www.paxar.com) and converts TrueType fonts to Hex or Run Length encoding. When downloading a TrueType font, you download the entire font. You cannot specify a subset (particular characters or point size) of the font. This allows you to print a variety of Code Pages with International (Turkish, Latin, Spanish, etc.) characters. TrueType fonts are designed to be regionally specific; therefore, all code pages may not be supported in a given font.

These font files are large and may image slower than bitmap fonts. The size of the font file, in bytes, is the minimum amount of memory you must have available for fonts in the printer's downloadable fonts buffer.

You may need to reconfigure the printer's memory to use downloaded TrueType fonts. After reconfiguring memory, resend the font, format, and batch packets. See "Defining the Memory Configuration Packet" in Chapter 2 for more information. Also, Chapter 2 lists some special considerations when defining memory for downloaded TrueType fonts.

Using UNICODE (Double-Byte) TrueType® Fonts

Previously, our printers supported downloadable fonts, but with limited code pages. Characters are represented by character code pages. These fonts are designed to be regionally specific; therefore, all code pages may not be supported in a given font. For example, using Code Page 1252 (Latin 1), index 192 (represented as $\boldsymbol{\sim} 192$ in an MPCL batch packet) prints this character, A. The printers previously supported single-byte character sets, which provided 255 different characters.

Now, with version 2.8 or greater software, the printer has UNICODE (double-byte) font sets, which provide over 65,000 characters. Unicode is a double-byte (16-bit) encoding that includes many characters used throughout the world. Each Unicode index refers to a particular character, just like the index in a code page.

TrueType font files are large and may image slower than bitmap fonts. The size of the font file, in bytes, is the minimum amount of memory you must have available for fonts in the printer's downloadable fonts buffer.

Character Mapping Overview

The printer can accept TrueType fonts in UNICODE character mapping.

Character Mapping		Code Page
Batch Data*	TrueType Font Encoding	use in text or constant text fields
UNICODE	BIG5	102
UNICODE	SJIS	102
UNICODE	KSC5601	102
UNICODE	GB2312	102
UNICODE	UNICODE	102

* Characters in batch data must be entered based on their UNICODE ID.

Sample UNICODE (Double-Byte) Font Format and Batch

$$
\begin{aligned}
& \{\mathrm{F}, 3, \mathrm{~A}, \mathrm{R}, \mathrm{E}, 150,200, \text { "SIMPLE" : } \\
& \mathrm{T}, 1,5, \mathrm{~V}, 10,10,0,100,30,30, \mathrm{~B}, \mathrm{~L}, 0,0,102 \mathrm{i}\} \\
& \{\mathrm{B}, 3, \mathrm{U}, 1 \mathrm{I} \\
& 1, " \sim 125 \sim 000 \sim 125 \sim 002 \sim 125 \sim 004 \sim 125 \sim 005 ":\}
\end{aligned}
$$

This example prints these four characters with UNICODE batch data of $\sim 125 \sim 000, \sim 125 \sim 002, \sim 125 \sim 004$ and $\sim 125 \sim 005$.

Licensing Your Fonts

Monarch provides the Soft Font Utility to help you create and download international code pages/characters. However, it is your responsibility to license the fonts you purchase and download to your Monarch® printer. Contact your font supplier for licensing information.

Using Font Numbers in Formats

Use the following font numbers in your format when designating new fonts.

1-49	Resident fonts (bitmapped only)
50-99	Resident fonts (scalable only)
100-499	Customer-generated RAM fonts (bitmapped)
500-999	Monarch's optional ROM fonts (bitmapped and scalable)
1000-8999	Monarch's optional RAM fonts (bitmapped)
$\mathbf{9 0 0 0 - 9 9 9 9}$	Monarch's optional RAM fonts (scalable only)

If you use a font number that is not a standard font for your printer, make sure the font has been installed in the printer.

Locating the Font Number in a Font Packet

If you are creating font packets, the font number is the second parameter in the packet. Software is available to create the font data and packet. Call Technical Support for more information. Font Number
Example

```
{W,200,A,N,68 !
font data :
font data { }
```

Use this number in T8 or in C5. See "Defining Text Fields" or "Defining Constant Text Fields" in Chapter 3 for more information. Font Number
$\mathrm{T}, 1,10, \mathrm{~V}, 30,10,0,200,1,1, B, L, 0,0,0$
$\mathrm{C}, 50,30,0,200,1,1, B, L, 0,0, ~ " M O N A R C H$
Defines a text and constant text field using the downloaded (\#200) font.

SYMBOL SETS/CODE PAGES

This appendix contains a listing of the symbol sets, code pages, and extended character sets the printers support.

Use the charts in this appendix to convert dot sequences from the image dot pattern to codes you can use in the fields. Use the Binary to Hex Conversion Chart to convert Binary dot sequences to Hexadecimal numbers for bitmap files. Use the Dot to Run Length Encoding Chart to convert dot sequences to alphabetic characters for bitmap files.

Supported Symbol Sets and Code Pages

The printer supports these symbol sets and code pages: Internal, ANSI, Bold, OCRA Character Set, DOS Code Page 437 and 850. Additional Code Pages are supported with downloaded TrueType or UNICODE (double-byte) fonts.

The printer defaults to the internal symbol set. See "Defining the System Setup Packet" in Chapter 2 to change the symbol set.

The CG Triumvirate ${ }^{\text {TM }}$ typefaces support only the ANSI and DOS Code Page 437 and 850 Symbol Sets. These fonts print a slashed zero when using the ANSI symbol set. However, the scalable font does not print a slashed zero or support Code Page 1256 (Arabic).

Internal	Use this symbol set to print international monetary symbols, the trademark (TM) symbol, and for formats that may be used on other MPCLII
printers.	

Using Code 128 Function Codes

This table lists the characters for Bar Code 128 function codes. These functions are used with scanners.

Code	Function Code
~ 201	F1
~ 202	F2
~ 203	F3
~ 204	F4

Entering Extended Characters

When using extended characters in your batch data file, type a tilde in front of the three-digit code. For example, if you want to include the character Ä in a text field using the Internal Symbol Set, type:
1,"~142"

Using International Character Sets/Code Pages

Code pages 100, 101, 852-860, and 1250-1258 may only be used with downloaded TrueType fonts. TrueType fonts are designed to be regionally specific; therefore, all code pages may not be supported in a given font. Font 50 does not support Code Pages 101 (Wingdings), 1255 (Hebrew), 1256 (Arabic), or 1258
(Vietnamese). For example, to print Hebrew characters, you need to find a font (such as Arial) that supports Hebrew characters; convert, and then download the font to your printer. Make sure the correct Code Page for Hebrew characters is selected. The character sets (100 and greater) were printed using Arial or a similar downloaded TrueType font. To determine the character code, add the column number and row number for the character. For example, to produce the ÿ character, you would press Alt 255 (column 15 + row 240).

The Euro-dollar symbol at position ~ 192 is only available in the Standard, Reduced, and Bold fonts.

The printer can accept TrueType fonts in UNICODE character mapping using Code Page 102. This code page contains thousands of characters, which are not represented in this manual.

Internal Symbol Set

ANSI Symbol Set

Bold Character Set

OCRA Character Set

Code Page 437 (Latin U.S.)

Code Page 850 (Latin 1)

Code Page 852 (Latin 2)

Code Page 855 (Russian)

Code Page 857 (IBM Turkish)

Code Page 860 (MS-DOS Portuguese)

Code Page 1250 (Latin 2)

Code Page 1251 (Cyrillic)

Code Page 1252 (Latin 1)

Code Page 1253 (Greek)

Code Page 1254 (Turkish)

Code Page 1255 (Hebrew)

Code Page 1256 (Arabic)

Code Page 1257 (Baltic)

Code Page 1258 (Vietnamese)

ASCII to Hexadecimal Conversion Chart

Use the chart below to translate the characters printed on your test label. The chart lists ASCII characters and their hexadecimal and decimal equivalents.

Char.	Hex	Decimal	Char.	Hex	Decimal
NUL	00	0	DC2	12	18
SOH	01	1	DC3	13	19
STX	02	2	DC4	14	20
ETX	03	3	NAK	15	21
EOT	04	4	SYN	16	22
ENQ	05	5	ETB	17	23
ACK	06	6	CAN	18	24
BEL	07	7	EM	19	25
Backspace	08	8	SUB	1 A	26
Tab	09	9	Escape	1B	27
linefeed	0A	10	cursor right	1 C	28
home	OB	11	cursor left	1D	29
form feed	0 C	12	cursor up	1E	30
carriage return	OD	13	cursor down	1F	31
SO	OE	14	space	20	32
SI	OF	15	!	21	33
DLE	10	16	${ }^{\prime}$	22	34
DC1	11	17	\#	23	35

ASCII to Hexadecimal Conversion Chart (continued)

Char.	Hex	Decimal	Char.	Hex	Decimal
\$	24	36	;	3B	59
\%	25	37	<	3 C	60
\&	26	38	=	3D	61
,	27	39	>	3E	62
$($	28	40	?	3 F	63
)	29	41	@	40	64
*	2A	42	A	41	65
+	2 B	43	B	42	66
,	2 C	44	C	43	67
-	2D	45	D	44	68
	2E	46	E	45	69
1	2 F	47	F	46	70
0	30	48	G	47	71
1	31	49	H	48	72
2	32	50	1	49	73
3	33	51	J	4A	74
4	34	52	K	4B	75
5	35	53	L	4 C	76
6	36	54	M	4 D	77
7	37	55	N	4E	78
8	38	56	0	4F	79
9	39	57	P	50	80
:	3A	58	Q	51	81

ASCII to Hexadecimal Conversion Chart (continued)

Char.	Hex	Decimal	Char.	Hex	Decimal
R	52	82	i	69	105
S	53	83	j	6A	106
T	54	84	k	6B	107
U	55	85	1	6 C	108
v	56	86	m	6D	109
w	57	87	n	6 E	110
X	58	88	-	6 F	111
Y	59	89	p	70	112
Z	5 A	90	q	71	113
[5B	91	r	72	114
1	5 C	92	s	73	115
]	5D	93	t	74	116
\wedge	5E	94	u	75	117
-	5F	95	v	76	118
-	60	96	w	77	119
a	61	97	x	78	120
b	62	98	y	79	121
c	63	99	z	7A	122
d	64	100	\{	7B	123
e	65	101	1	7 C	124
f	66	102	\}	7D	125
g	67	103	\sim	7E	126
h	68	104	delete	7F	127

Binary to Hex Conversion Chart

Binary	Hex	Binary	Hex
00000000	00	00100000	20
00000001	01	00100001	21
00000010	02	00100010	22
00000011	03	00100011	23
00000100	04	00100100	24
00000101	05	00100101	25
00000110	06	00100110	26
00000111	07	00100111	27
00001000	08	00101000	28
00001001	09	00101001	29
00001010	OA	00101010	2A
00001011	OB	00101011	2B
00001100	OC	00101100	2 C
00001101	OD	00101101	2D
00001110	OE	00101110	2E
00001111	OF	00101111	2F
00010000	10	00110000	30
00010001	11	00110001	31
00010010	12	00110010	32
00010011	13	00110011	33
00010100	14	00110100	34
00010101	15	00110101	35
00010110	16	00110110	36
00010111	17	00110111	37
00011000	18	00111000	38
00011001	19	00111001	39
00011010	1A	00111010	3A
00011011	1B	00111011	3B
00011100	1 C	00111100	3 C
00011101	1 D	00111101	3D
00011110	1E	00111110	3E
00011111	1F	00111111	3F

Binary to Hexadecimal Conversion Chart (continued)

Binary	Hex	Binary	Hex
01000000	40	01100000	60
01000001	41	01100001	61
01000010	42	01100010	62
01000011	43	01100011	63
01000100	44	01100100	64
01000101	45	01100101	65
01000110	46	01100110	66
01000111	47	01100111	67
01001000	48	01101000	68
01001001	49	01101001	69
01001010	4A	01101010	6A
01001011	4B	01101011	6 B
01001100	4 C	01101100	6 C
01001101	4D	01101101	6 D
01001110	4E	01101110	6 E
01001111	4F	01101111	6 F
01010000	50	01110000	70
01010001	51	01110001	71
01010010	52	01110010	72
01010011	53	01110011	73
01010100	54	01110100	74
01010101	55	01110101	75
01010110	56	01110110	76
01010111	57	01110111	77
01011000	58	01111000	78
01011001	59	01111001	79
01011010	5A	01111010	7 A
01011011	5B	01111011	7B
01011100	5 C	01111100	7 C
01011101	5D	01111101	7D
01011110	5E	01111110	7E
01011111	5F	01111111	7F

Binary to Hexadecimal Conversion Chart (continued)

Binary	Hex	Binary	Hex
10000000	80	10100000	A0
10000001	81	10100001	A1
10000010	82	10100010	A2
10000011	83	10100011	A3
10000100	84	10100100	A4
10000101	85	10100101	A5
10000110	86	10100110	A6
10000111	87	10100111	A7
10001000	88	10101000	A8
10001001	89	10101001	AA
10001010	$8 A$	10101010	AB
10001011	$8 B$	10101011	AC
10001100	$8 C$	10101100	AE
10001101	$8 D$	10101101	AF
10001110	$8 E$	10101110	B0
10001111	$8 F$	10101111	B1
10010000	90	10110000	B3
10010001	91	10110001	B4
10010010	92	10110010	B5
10010011	93	10110011	B6
10010100	94	10110100	B7
10010101	95	10110101	B8
10010110	96	10110110	B9
10010111	97	10110111	BA
10011000	98	10111000	BB
10011001	99	10111001	BD
10011010	$9 A$	1011010	BF
10011011	$9 B$	10111011	
10011100	9 C	10111100	1011101
10011101	9 F	1011110	1011111

Binary to Hexadecimal Conversion Chart (continued)

Binary	Hex	Binary	Hex
11000000	C0	11100000	E0
11000001	C1	11100001	E1
11000010	C2	11100010	E2
11000011	C3	11100011	E3
11000100	C4	11100100	E4
11000101	C5	11100101	E5
11000110	C6	11100110	E6
11000111	C7	11100111	E7
11001000	C8	11101000	E8
11001001	C9	11101001	E9
11001010	CA	11101010	EA
11001011	CB	11101011	EB
11001100	CC	11101100	EC
11001101	CD	11101101	ED
11001110	CE	11101110	EE
11001111	CF	11101111	EF
11010000	D0	11110000	F0
11010001	D1	11110001	F1
11010010	D2	11110010	F2
11010011	D3	11110011	F3
11010100	D4	11110100	F4
11010101	D5	11110101	F5
11010110	D6	11110110	F6
11010111	D7	11110111	F7
11011000	D8	1111000	F8
11011001	D9	11111001	F9
11011010	DA	1111010	FA
11011011	DB	11111011	FB
11011100	DC	11111100	FC
11011101	DD	1111101	FE
11011110	DE	1111110	FF
11011111	DF	11111111	

Dot to Run Length Encoding Chart

ON (Black) Dots

\# of Dots	Code	\# of Dots	Code
1	A	14	N
2	B	15	O
3	C	16	P
4	D	17	Q
5	E	18	R
6	F	19	S
7	G	T	
8	H	20	U
9	I	21	V
10	J	22	W
11	K	23	X
12	L	24	Y
13	M	25	Z

OFF (White Dots)

\# of Dots	Code	\# of Dots	Code
1	a	14	n
2	b	15	o
3	c	16	p
4	d	17	q
5	e	18	r
6	f	19	s
7	g	20	u
8	h	21	v
9	i	22	w
10	j	23	x
11	k	24	y
12	l	25	z

FORMAT DESIGN TOOLS

Use copies of these worksheets and grids to create formats, batch data, and check digit schemes. You may want to keep copies of the completed forms for your records:

- Online Configuration Worksheet
- Batch Worksheet
- Check Digit Worksheet
- Supply Layout Grids (Inches, Metric, Dots)
- Format Worksheet
- Format Sample Worksheet

Online Configuration Worksheet

Batch Worksheet

BATCH

	FIELD \#	DATA
	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	
	10	
	11	
T	12	
E	13	
¢	14	

	C	DATA
	C	
	C	
	C	
	C	
	C	
	C	
	C	
	C	
	C	
	C	
\bar{z}	C	
エ̇	C	
ト	C	
¢0	C	

Check Digit Worksheet

		$$					$\underset{\text { A8 }}{\text { WEIGHTS }}$
A			R				

				$\begin{aligned} & \infty \\ & 3 \\ & \vdots \\ & \sum_{2}^{0} \\ & 2 \end{aligned}$			$\underset{\text { A8 }}{\text { WEIGHTS }}$
A			R				

		$\begin{aligned} & \text { Z } \\ & \frac{0}{1} \\ & \hline \mathrm{O} \\ & \text { M } \end{aligned}$		$\begin{aligned} & \infty \\ & 3 \\ & 2 \\ & 0 \\ & 2 \\ & 2 \\ & 8 \end{aligned}$			$\begin{gathered} \text { WEIGHTS } \\ \text { A8 } \end{gathered}$
A			R				

D-4 Format Design Tools

Supply Layout (Inches)

\square - Indicates
 no-print area

Supply Layout (Metric)

D-6 Format Design Tools

Format Design Tools D-7

D-8 Format Design Tools

Format Name
Format \#

FORMAT WORKSHEET

Date
Supply Size
Supply Type
Customer Name
Software Version

GLOSSARY

Batch Data
2,"Monarch"
Batch Control
E,0,1,1,1
Batch Header
\{B,1,N,1\}
Batch Packet
\{B,1,N,1
2,"Monarch" $\mid\}$
Bitmapped Fonts

Buffer

Field

Field Definition

Defines the actual information (as fields within \{ \}) printed on the label.

Defines the print job (as a field).

First line of a batch, immediately following (\{). Identifies the format and batch quantity.

Contains a batch header and the batch data. Enclosed within $\{$ \}.

Reside in the printer's RAM or in a ROM chip. If you change the point size, you have changed the font. Magnifying these fonts causes some jaggedness to occur.

Storage area in the printer's memory that holds specific data (images, formats, etc).

Can be text, bar codes, lines, boxes, constant, or non-printable text. It is the result of a field definition.

Any string of parameters that pertain to one field. A field definition begins with a field identifier (such as \mathbf{T}, B, D, C, etc.).

T, 1, 10, V, 250,50,0,1,1,1,B,C,0,0,0 |

Format

Layout or design for your printed label.

First line of a format, immediately following the start of packet (\{). A format header must begin with F, followed by various header elements.
\{F,1,A,R,E, 600,150,"Fmt-1"
Monospaced Fonts All characters have the same width and are easy to center justify. (Standard, bold, and reduced are monospaced.)

Non-volatile RAM Contains information that is SAVED on power-down. (NVRAM)

Option Any line within a format that applies special formatting R,1,"Monarch"

Packet
\{B,1,N,1
2,"Monarch" $\mid\}$

Pre-image

Proportionally Spaced Fonts Fonts

Volatile RAM

A way to optimize the printer, because it images the fields while data is collected. After the last field is imaged, the label prints almost immediately.

All characters have different widths and are difficult to center justify.

Soft (Downloaded) Reside in the printer's RAM. They can be erased or to a field. This line always begins with \mathbf{R} and must immediately follow the field it applies to.

Any string of characters within (\{ \}). overwritten.

Contains information that is LOST on power-down.

INDEX

A

adding custom fonts 2-28
adjustments, print 2-8
algorithm, in sum of digits $\quad 4-16$
algorithm, in sum of products 4-15
alignment,bar code 3-14
allocating
memory 2-21

B

backfeed
packet syntax 2-19
bar code
defining aspect ratios
PDF417 options 4-11
bar code alignment 3-14
bar code density syntax 4-9
bar codes
character lengths 3-9
customizing density 4-9
defining 3-8
defining densities 4-9
determining distance from left/right
3-10, 3-15
determining distance from
top/bottom 3-10
generating check digits 4-8
justification 3-14
list of types 3-11
modifying height 3-14
placing human readables 9-6
rotating 3-14
selecting a density 3-11
selecting human readables $\quad 3-14$
batch
canceling printing 2-16
clearing data from memory
2-27
overview of packet 6-2
batch control
definition of term 1-1
batch control field defining 6-3 syntax 6-3 sample 6-3
batch data
definition of term 1-1
batch data field
defining
6-4
syntax 6-4
sample 6-4
using entered/copied data 6-5
batch data, sample with special
characters 6-5
batch data, using special characters
with 6-4
batch header
syntax 6-2
defining 6-2
definition of term 1-1
sample 6-2
using zero quantities 9-3
batch method of downloading
explained 6-9
batch packet
definition of term 1-1
batch quantity zero
downloading explained 6-9
batch quantity, defined 6-2
baud rate selection 2-18
bitmap
defining fields $\quad 5-13$
defining next fields $\quad 5-14$
defining the header 5-11
hexadecimal chart
hexadecimal method
overview 5-2
run length chart C-20
run length method
storing the image 5-8
bitmapped fonts
definition of term 1-1
black to white print ratio
5-3

boxes

defining 3-21
determining distance from left/right
3-22
determining distance from
top/bottom 3-22
buffer
definition of term 1-1
scalable font 2-24
buffer selection 2-21
buffer size selection 2-21
$\overline{\mathbf{C}}$
calling technical support 8-4
changing
backfeed control 2-19
bar code density 4-9
communication settings 2-18
memory configuration 2-21
packet control characters 2-14
security level of PDF417 4-10-4-11
character rotation
in constant text field 3-17
in text field 3-6
characters
magnifying font size
B-4
number of in bar code 3-8
number of in text 3-3
padding 4-7
placement of human readables $\quad 9-6$
chart
hexadecimal conversion C-16
run length conversion $\quad \mathrm{C}-20$
check digit option syntax 4-8
check digit schemes
syntax 4-14-4-15
using sum of digits 4-16
using sum of products 4-15
check digit worksheet D-3
check digits
clearing scheme from memory 2-27
customizing a scheme 4-14
generating 4-8
checking
job status 7-8
printer status 7-2
clearing packets 2-27
code pages C-1
1251 table C-9
1252 table C-10
1258 table C-12
437 and $850 \quad \mathrm{C}-1$
437 table C-5
850 table C-6
entering $\quad \mathrm{C}$-2
International characters 2-9
selecting $\mathrm{C}-1$
color options of text 3-5, 3-16
communication
packet syntax 2-18
using a mode command 2-2
compliance label
including in a field 5-18
configuration
types of 2-2
uploaded from printer 2-6
configuration packets
backfeed control packet G
2-19
communication settings packet F 2-18
guidelines $\quad 2-8$
header 2-5
memory configuration packet M
2-21
monetary formatting packet D
2-13
overview 2-5
packet control characters E 2-14
print control packet C 2-12
sample
2-6
supply setup packet B 2-10
system setup packet A 2-9
constant text fields
character rotation 3-17
defining 3-15
determining distance from
top/bottom 3-15
justification 3-17
modifying character height 3-16
modifying character width 3-16
rotating 3-17
sample $\quad 3-15,3-18$
control characters
factory defaults 2-3
resetting 2-15
selecting 2-14
syntax 2-14
copy data
in partial form 4-6
merging fields 4-6
source field 4-5
syntax 4-3, 4-5
copying data, using option 4-5
Cyrillic characters C-9

D

data
copy option 4 4-5
deciding on a field type 1-8
for batch 6-4
list of errors 8-5
padding option 304-7
picking a font 1-9
type restrictions option 2 4-4
data stream

examples
 A-3

Maxicode A-3
data type restrictions
defining as option 2 4-4
decimal point selection 2-13
decrementing fields
fixing the first number $\quad 4-12$
syntax 4-12
using option 60 4-12
defining
backfeed control packet G
2-19
bar code type 3-11
bar codes 3-8
batch control field 6-3
batch data field 6-4
batch header 6-2
bitmap fields $5-13$
boxes 3-21
check digit scheme w/sod 4-16
check digit scheme w/sop 4-15
communication settings packet F 2-18
configuration header 2-5
constant text fields $3-15$
duplicate fields 5-15
font upload packet 2-28
graphic header 5-11
lines 3-19
memory configuration packet $M \quad 2-21$
monetary formatting packet D 2-13
next-bitmap fields 5-14
packet control characters E 2-14
print control packet C 2-12
supply setup packet B 2-10

4 Index
reimaging 4-13
restrictions 4-2
security/truncation for PDF417 4-10
using multiple 4-2
width/length for PDF417 4-11
fields
bar code rotation 3-14
batch control syntax 6-3
batch data syntax 6-4
constant text rotation 3-17
deciding a type 1-8
finding trailing spaces $\quad 9-6$
font considerations 1-9
padding 4-7
picking a font 1-9
repeating parameters 9-5
text field rotation 3-6
types briefly described 1-8
using a worksheet 1-9
using data entry/copied fields 6-5
fixed data
in constant text field 3-17
in text field 3-3
syntax 4-4
flash memory 1-4
flash memory errors
list of 8-18
flow control selection 2-18
font
legal information B-13
overview 1-9
scalable B-9
TrueType $\quad 2-9, \mathrm{~B}-1, \mathrm{~B}-10, \mathrm{C}-2$
font packets
clearing from memory 2-27
font upload packet
defining
2-28
fonts
double-byte B-11
monospaced magnification B-4
optimizing
9-5
proportional magnification B-6
format
buffer 2-24
definition of term 1-1
print area 1-5
scalable font B-9
TrueType font B-9
format header definition of term 1-2
format worksheet D-1
overview 1-9
formats
clearing from memory 2-27
decisions to make 1-5
defining bar codes 3-8
defining boxes 3-21
defining constant text fields
defining lines 3-19
defining text fields 3-3
defining the header 3-2
designing 1-4-1-6
determining content 1-5
field types described briefly 1-8
filling in worksheets 1-9
font considerations 1-9
referenced in batch packet
sample 1-2, A-2
using grids 1-7
formats, modifying 6-10
formatting errors list of 8-15

G

generating check digits with option 314-8
graphic
defining bitmap fields $\quad 5-13$
defining duplicate fields 5-15
defining next-bitmap fields
defining the header $5-11$
field, defining $5-18$
hexadecimal chart C-16
hexadecimal method 5-2,5-4
including in a format 5-18
overview of bitmap 5-2
run length chart C-20
run length method 5-2, 5-6
storing the image 5-8
graphic image including 5-18
graphic packets clearing from memory 2-27 grid overview 1-7

H

hard printer failure errors list of 8-19
help, getting 8-4
hex graphic packet sample 5-16
human readable characters placement considerations 9-6 selecting for a bar code 3-14
image buffer $\frac{1}{2-23}$
imaging
repeating parameters 9-5
using zero batch headers 9-3
imaging time
when to use scalable fonts $\quad 9-5$
immediate commands
enabling 2-16
sending 2-16
table 2-16
when to use 2-16
including
compliance label, in a format 5-18
graphic image $5-18$
incrementing fields
fixing the first number $4-12$
restrictions 4-2
syntax 4-12
using option $60 \quad 4-12$
inquiry request
explanation of 7-2
inquiry response
explanation of 7-2
International code pages 2-9

6 Index
M
machine errors list of 8-16
magnification considerations 9-6 of monospaced fonts B-4 of proportional fonts B-6
mapping
method, hexadecimal 5-2,5-4
method, run length
5-2, 5-6
margin adjustment selection 2-12
Maxicode
data stream A-3
MaxiCode information A-3
measurement
on a grid 1-7
memory
allocating 2-21
clearing packets 2-27
packet syntax 2-21
storing images in RAM 5-8
memory buffer
downloadable fonts 2-24
format 2-24
image 2-23
receive 2-23
scalable font 2-24
transmit 2-23
merging
copied data 4-6
fields with option 4 4-5
mode command sample 2-2
modifying formats 6-10
modulus
description of check digit calc $4-14$
in sum of digits 4-16
in sum of products 4-15
monetary
decimal selection 2-13
formatting syntax 2-13
list of options 2-13
symbol selection 2-13
symbol setting 2-13
monospaced fonts definition of term 1-2
monospaced fonts, magnification of B-4

N

non-volatile RAM
definition of term 1-2

0

online configuration worksheet D-2
online mode selection 2-9
optimizing
print quality $\quad 9-2$
print speed 9-2
repeating field parameters 9-5
using zero batch quantities 9-3
option
definition of term 1-2
optional entry method 6-10
options
field 4-11
options,field 4-9
brief list of 4-2
calculating check digits 4-8
copy data 4-5
customized bar code density 4-9
data type restrictions 4-4
general overview 4-2
incrementing/decrementing fields 4-12
ordering 4-2
padding data 4-7
reimaging $\quad 4-13$
restrictions 4-2
security/truncation for PDF417 4-10
using multiple 4-2
width/length for PDF417 4-11

P

packet
definition of term 1-2
packet A
syntax 2-9
packet B
syntax 2-10
packet C
syntax 2-12
packet control characters
factory defaults 2-3
resetting 2-15
selecting new 2-14
syntax 2-14
packet D
syntax 2-13
packet E
syntax 2-14
packet F
syntax 2-18
packet G
syntax 2-19
packet M
syntax 2-21
packets
batch 6-2
check digit scheme 4-14
clearing from memory 2-27
configuration 2-5
configuration upload 2-6
guidelines $\quad 2-4$
padding data 4-7
syntax $\quad 4-7$
parameters
definition of term 1-1
for batch control field 6-3
for batch data field
for batch header 6-2
repeating 9-5
parity selection 2-18
PDF417 bar codes
security/truncation
width/length 4-11

8 Index
placing
human readables 9-6
point size
B-9
polling for status
overview 7-1
positioning
graphic image in a field $5-10$
graphic image in a format 5-11
graphic image in a packet 5-9
pre-image
definition of term 1-2
price fields
monetary formatting 2-13
restrictions with incrementing 4-2
print adjustments 2-8
print area 1-5
maximum size 1-5
print contrast/vert adjustment
selection 2-12
print control
in batch control field 6-3
syntax 2-12
printer
features $\quad 1-1$
printer configuration
backfeed control packet G \quad 2-19
communication settings packet F 2-18
header 2-5
memory configuration packet M 2-21
monetary formatting packet D \quad 2-13
packet C 2-12
packet control characters E 2-14
packet guidelines 2-8
packet overview 2-5
packet sample 2-6
supply setup packet B 2-10
$\begin{array}{lll}\text { supply setup packet B } & 2-10 \\ \text { system setup packet A } & 2-9\end{array}$
upload syntax 2-6
printer status
explanation of response $\quad 7-2$
overview 7-1
requesting $\quad 7-2$
syntax $\quad 7-2$
symax
-
printers
data errors 8-5
data formatting errors $8-15$
hard printer failure errors 8-19
machine fault errors 8-16, 8-18
ways to configure 2-2
printing
black to white ratio 5-3
canceling 2-16
horiz adjustment 2-8
overview 6-1
vert adjustment 2-8
problem
running out of printer memory $\quad 2-27$
problems
getting technical support 8-4
human readables cut off 9-6
image time and changing data $9-5$
image time and unchanging data 9-3
imaging time and repeating field
parameters 9-5
incorrect symbols print 3-18
invalid packet syntax 2-4
list of data errors 8-5
list of flash memory errors 8-18
list of format errors 8-15
list of hard printer failure errors $8-19$
list of machine fault errors 8-16
missing/overlapping due to
magnification 9-6
no check digit generated 4-8
off tag errors 9-6
poor print quality 9-2
programming conventions 2-4
proportional fonts, magnification of B-6
proportionally spaced fonts
definition of term 1-2

R

RAM 1-3
storing images $\quad 5-8$
receive buffer 2-23
reimaging, using option 61 4-13
requesting job status
explanation of 7-8
requesting printer status
explanation of 7-2
overview 7-1
resetting packet control characters 2-15
response
to job request 0-2 7-9
to job request 3 7-10
to job request 4 7-12
ribbon selection 2-10
rotating
bar codes 3-14
constant text characters 3-17
constant text fields 3-17
text characters 3-6
text fields 3-6
rough sketches 1-6
run length graphic packet sample 5-17

S

sample
backfeed control packet G 2-19
bar code density option 4-9
batch control field 6-3
batch data field 6-4
batch header 6-2
batch method downloading 6-9
calculate check digit option 4-8
check digit scheme packet 4-14-4-15
communication settings packet F 2-18
configuration packet 2-6
copy field 4-6
font packet 2-29
font, bold style B-6
font, OCRA style B-6
font, standard style B-5
format A-2
format header 3-2
hex graphic packet 5-16
immediate command 2-16
incrementing/decrementing field
option 4-12
inquiry response 7-2
job request 7-8
job response 0-2 7-9
job response 3 7-10
job response 4 7-12
memory configuration packet $F \quad 2-21$
mode command 2-2
monetary formatting packet D 2-13
monospaced font magnification B-4
packet control characters E 2-14
padding data 4-7
print control packet C 2-12
printer configuration uploaded 2-7
proportional font magnification B-6
run length graphic packet 5-17
sequential method downloading 6-9
supply setup packet B 2-10
system setup packet A 2-9
text field 3-3
scalable font B-9
buffer 2-24
formats B-9
schemes
customizing check digits 4-14
security/truncation
using option 51 4-10
segments defining 3-19
selecting bar code type 3-11
selector, check digit
description of $4-14$
sending immediate commands
sequential downloading
explained 6-9
serial communication2-2
setting
backfeed distance 2-19
battery voltage 2-12
baud rate 2-18
dispense position 2-19
feed mode 2-10
flow control 2-18
format number 3-2
language 2-9
margin position 2-12
monetary symbol 2-13
number of decimal places 2-13
online mode 2-9
parity 2-18
print contrast 2-12
print position 2-12
print speed 2-12
printhead width 2-12
ribbon 2-10
serial communication 2-2
stop bits 2-18
supply size 3-2
supply type/position 2-10
unit of measure 3-2
word length 2-18
size of
monospaced fonts B-4
proportaional fonts B-6
smart imaging 9-1
soft fonts
definition of term 1-2
source field, of copy data 4-5
special characters, using with batch
data 6-4
speed adjustment selection 2-12
standard features 1-1
standard fonts, list of B-1
status polling
overview 7-1
stop bits selection 2-18
storage device $\quad 5-8$
storing
images 5-8
images in RAM 5-8
sum of digits calculation $4-16$
sum of products calculation 4-15
supply
about the layout grid 1-7
measurement on a grid 1-7
type/position selection 2-10
supply setup
syntax 2-10
supply type/position selection 2-12
symbol set
C-1
ANSI
C-1
entering $\quad \mathrm{C}-2$
Internal table C-3
options 3-7
selecting C-1
syntax
backfeed control packet G 2-19
communication settings packet F 2-18
constant text field 3-15, 3-18
font upload packet 2-28
format header 3-2
memory configuration packet $M \quad 2-21$
monetary formatting packet D 2-13
packet control characters E 2-14
print control packet C 2-12
printer configuration upload
2-6
supply setup packet B
2-10
system setup packet A 2-9
system setup
syntax 2-9

T

table
bar code lengths 3-9
ENQ reference byte 2 7-4
ENQ reference byte 3 7-6
fixed/variable bar codes 3-9
hexadecimal conversion C-16
immediate commands 2-16
job status 0-2 7-13
run length conversion C-20
special characters, sample batch data 6-5
technical support $\quad 8-4$
terms defined
text fields
character rotation 3-6
color attributes 3-5, 3-16
defining 3-3
determining distance from left/right
3-4
determining distance from
top/bottom 3-3
justification 3-6
modifying character height 3-5
modifying character spacing 3-4, 3-15
modifying character width 3-5
placing proportionally spaced
characters 3-3
rotating 3-6
syntax 3-3
thickness
line 3-21
trailing spaces finding 9-6
transmit buffer 2-23
transparent overlay explanation 3-5
TrueType font $\quad 2-9, \mathrm{~B}-1, \mathrm{~B}-9-\mathrm{B}-10, \mathrm{C}-2$ format B-9
types of fields
brief description 1-8

U

unit of measure setting 3-2
uploading
configuration 2-6
font packet 2-28
V
variable length padding for 4-7
vector fonts buffer 2-24
vectorsdefining 3-19
Vietnamese characters C-12
volatile RAMdefinition of term 1-2
voltage selection 2-12
Wwidth/length
using option 52 4-11
word length selection2-18
worksheet
check digit D-3
filling in 1-9
format D-1
online configuration D-2
overview 1-9

Visit www.paxar.com for sales, service, supplies, information, and telephone numbers for our International locations.

TOLL FREE:

1-800-543-6650 (In the U.S.A.)
1-800-363-7525 (In Canada)

