N/SA
 Technical Memorandum 80673

Applications oí Satellite Data Relay to Problems of Field Seismology

W. J. Webster, Jr.
W. H. Miller
R. Whitley
R. J. Allenby
R. T. Dennison

APRIL 1980

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

APPLICATIONS OF SATELLITE DATA RELAY TO PROBLEMS OF FIELD SEISMOLOGY

W. J. Webster, Jr. ${ }^{1}$
W. H. Miller ${ }^{2}$
R. Whitley ${ }^{3}$
R. J. Allenby ${ }^{1}$
R. T. Dennison ${ }^{4}$

April 1980

[^0]All measurement values are expressed in the International System of Units (SI) in accordance with NASA Policy Directive 2220.4, paragraph 4.

Abstract

A seismic signal processor has been developed and tested for use with the NOAA-GOES satellite data collection system. Performance tests on recorded, as well as real time, short period signals indicate that the event recognition technique used (formulated by Rex Allen) is nearly perfect in its rejection of cultural signals and that data can be acquired in many swarm situations with the use of solid state buffer memories. Detailed circuit diagrams are provided. The design of a complete field data collection platform is discussed and the employment of data collection platforms in seismic networks is reviewed.

CONTENTS

Page

ABSTRACT iv
INTRODUCTION 1
HISTORY AND JUSTIFICATION 2
DESIGN PHILOSPHY AND USER REQUIREMENTS 3
BASIC OPERATING PRINCIPLES OF SYSTEM 11
DEMONSTRATION HARDWARE 13
ANALOG CIRCUITS 15
EVENT-DETECTOR ALGORITHM AND ITS IMPLEMENTION. 24
PERFORMANCE TESTS 30
OPERATION OF AN EVENT LOCATION NETWORK
1 ING THE SEISMIC DCPs 41
SUMMARY 45
REFERENCES 47
APPENDIX A: OPERATING INSTRUCTIONS 48
APPENDIX B: COMMENTARY ON THE CDP1802 IMPLEMENTATION OF THE ALLEN ALGORITHM. 53
APPENDIX C: 1802 ASSEMBLY CODE, MEMORY MAP, PROGRAM CONSTANT SPECIFICATIONS AND TIMING SUMMARY 57

ACKNOWLEDGMENT

The authors wish to thank the many people who have worked on the development of the Seismic Detector system. In particular, the Fabrication and checkout performed by T. Clemons, the controller and simulater designed by C. Ferenc. In addition, the authors would like to acknowledge the helpful discussions with J. Yogelowich and G. Mead during the early design phases.

APPLICATIONS OF SATELLITE DATA RELAY

TO PROBLEMS OF FIELD SEISMOLOGY

INTRODUCTION

In 1975, The Geophysics Branch of Goddard Space Flight Center decided that developing a data collection platform (DCP) to transmit seismic information by satellite relay would be an excellent way of using space techniques to benefit scientific research. For the next several years, a cooperative program was maintained with Rex Allen at the U.S. Geological Survey's Branch of Earthquake Mechanics and Prediction at Menlo Park, California, with Goddard furnishing partial financial support for the development of a seismic-event detector algorithm. In 1977, a breadboard event detector, using a first version of Allen's algorithm, was designed, built and tested by Rovert Novas (1977)* at Goddard. This was preliminary to the present effort.

The design goal was a system with maximum reliability and scientific return at minimum unit cost and complexity. Scientific requirements were established by a survey of potential users in universities and federal agencies.

Upon completion of the initial design in mid-1977, it was decided to construct a breadboard engineering model to demonstrate the viability of the concept. The purpose of this effort was to show that a satellite seismic DCP can be constructed with no technical risk. All of the elements of the DCP that might represent a risk were breadboarded and the results were used to refine the final design of the DCP. The breadboard was completed in early 1979 and was initially tested using

[^1]magnetic tapes of Alaskan seismic events, furmished by the University of Alaska. Since then the breadboard has been undergoing operational tests using a seismic signal transmitted by telephone lines to Goddard from a vertical axis, short-period seismic installation near Baltimore, Maryland.

The stated goal of proving the feasibility of the concept has been accomplished. Programmatic considerations have precluded further efforts to use the existing unit or develop a field-hardened unit. The purpose of this report is to describe and evaluate the breadboard design and operational characteristics. Additional information may be furnished to any group desirous of continuing this development.

HISTORY AND JUSTIFICATION

The collection of data by satellite is a relatively new technique first demonstrated in 1967 using NASA's ATS-1 (Applications Technology Satellite). The first demonstration was the NASA Omega Position Location Equipment System which proved that accurate positions could be obtained from platforms in remote locations and that satellite relay did not degrade the data. This experiment was followed in 1969 by the Interrogation, Recording and Location System flown on Nimbus-3 and Nimbus-4. This was the first global satellite system to demonstrate the worldwide capabilities of data collection by satellite.

Because they were designed to respond to interrogations from the satellites, these ground systems were relatively large and expensive and required considerable power. This was overcome in the Landsat series of satellites, initiated in 1972, by designing the ground platforms to transmit at random times, thus eliminating the requirement for having a receiving system in the DCP. In 1974, NOAA introduced the GOES (Geostationary Operational Environmental Satellite) system that employs either a scheduled or satellite interrogated transmission system.

Figure 1 is a block diagram of typical satellite relaying systems currently being used to return information from low-data-rate geophysical instruments such as tide gauges, strain meters and tiltmeters. However, because of the high-data-rate requirements, no practical cost-effective system presently exists for returning high-data-rate seismic information. For example, continuously recording seismic data, using a 12 -bit word for signal resolution and sampling at 50 hertz (Hz), requires almost 52 megabits per day per component.

Off-the-shelf availability of such a field system would have many advantages. Currently, most unmanned seismic field stations either have to be visited every day or two, to replace recording paper, or the information has to be transmitted to a central location by expensive and sometimes noisy phone lines and/or radio relays. Phone lines, almost nonexistent in remote, inhospitable or underdeveloped areas such as Alaska, are often unreliable, even in populated areas. Furthermore, ground communcations often become inoperative before, during, and after a major earthquake. When geophysical systems are operated in extremely inaccessible regions, data are usually preserved on lowpowered, slow-speed recording systems which may run unattended for months; the data are then collected several times a year. Such systems require sacrifices in timing accuracy and information content, and since data analysis is often delayed for months after the events, earthquake prediction capability is lost. Also, there can be no assurance that the instrument is performing as planned. In addition, it is often desirable to rapidly augment a seismic network to collect earthquake precursor signals or monitor aftershocks, and the dependence upon phone lines or radio relays might impede the mobility of instrument siting and increase installation time. Finally, for earthquake disaster relief, it would be of inestimable value to have available worldwide seismic data in real time. The primary disadvantages are the increased cost and complexity of the collection system and. depending

Figurs 1. Block diagram of a typical satellite data relay system.
on the requirements of the investigator, the possible necessity of working with simplified or degraded data.

DESIGN PHILOSOPHY AND USER REQUIREMENTS

To be most widely applicable, a seismic DCP should possess the following characteristics:

1. Provide, in near real time, significant scientific data for a broad spectrum of investigators
2. Have a reasonable price; i.e., be affordable by most investigators
3. Operate with existing satellites
4. Operate on a one-to-one basis with a single seismic system;i.e., not be dependent on crosscorrelation schemes between multiple systems
5. Be battery operated with at least a six-months life between battery changes
6. Be field hardened; i.e., reliable, capable of unattended operation, environmentally sealed, wide thermal operating range, minimal moving parts such as tape recorders, etc.
7. Be relatively small and lightweight.

The obvious key to a practical field system is an "event detector" device that reliably differentiates signals from background noise. Once this is done, the noise periods can be discarded and the event signals can be operated on by the system. If desirable, further data compression can be performed on the stored events before transmission. Igure 2 schematically illustrates such a system.

The majority of event detecting devices have generally depended on a manually-set threshold for comparing short-term energy (signal) with long-term energy (noise). The reliability of such a device is considerably increased when cross-correlation between multiple seismic stations is possible, but such correlation is obviously not feasible when a single seismometer/DCP system is under

Figure 2. Biock diagram of a seismic data collection plationn (DCP).
consideration. Allenby et al. (1977), detailed the development of seismic event detectors. The algorithm used for Goddard's breadboard was developed by Rex Allen (1978) of the U.S. Geological Survey in Menlo Park, California, and was based on an earlier design by Stewart (1977).

In considering the scientific data provided by the system, it was decided that the DCP should be applicable mainly to research presently associated with remote, untended, short-period seismic installations. This would generally restrict the use of the system to local and regional data studies and would avoid data requirements associated with relatively complex analyses of very distant events or surface waves. The DCP should then be useful for studies related to:

1. Crustal Hazard Reductions
a. Earthquake mechanisms
b. Earthquake prediction
c. Interplate and intraplate stress and tectonism
d. Volcanic eruption prediction
e. Seismicity of reservoir fulling.
2. Crustal and Mantle Composition and Structure
3. Mine and Quarry Blast Monitoring
4. Tsunami Prediction.

The next scientific design consideration was what components of the individual seismic signal are needed for the various studies. In order of increasing data complexity these are:

1. Number of events per day

Volcano monitoring
Earthquake swarm studies

2. "P" (compressional wave) arrival	Location and magnitude of earthquakes
time	(tectonic and volcanic)
Direction first motion	Tsunami prediction
Duration and/or maximum amplitude	Blast monitoring
and frequency	Fault plane solutions
3. All of " 2 " plus " S " (shear wave)	Earthquake prediction
arrival time	$\left(\mathrm{V}_{\mathrm{p}} / \mathrm{V}_{\mathrm{s}}\right.$ anomalies)
	Regional seismicity

The challenge, then, was to design a practical field DCP system that would provide as much as possible of the above information. To help us in this, university and government scientists were consulted regarding their data preferences. Initially, some consideration was given to processing the data in the field and relaying back only numbers representarive of the values of times of the desired features. 'However, developing an algorithm to identify the " S " phase would be a ve, y difficult, if not impossible, task. In addition, we found almost no application in which the users were willing to accept the loss of the actual trace, primarily because of a natural unwillingness to depend on a field computer to analyze the signal. For these reasons it was decided to reconstruct the retumed signal into analog form. The general requirements for such a signal were a bandwidth of 0.5 to 25 Hz , a maximum-event length of around 180 seconds, and a digital resolution of 12 bits (72-dB signal-to-noise ratio). Considerable interest was also expressed in using 16-bit word lengths for signal level ($96-\mathrm{dB}$ signal-to-noise ratio), but, at that time 16 -bit analog-to-digital converters lacked stabiiity and reliability. For these reasons the final system was designed for a 12 -bit word at a sampling rate of 50 times per second. Thus, a 180 -second recording involves a total of 108 kilobit (kb) (not including any overhead due to housekeeping, timing, magnitude and quality data).

In addition to these primary requirements, other factors arose. First, because the S arrival from nearby events is often stronger than the P on short-period vertical sensors, it is desirable to return a portion of the trace preceding the selected event to verify that the event was picked on the P and not the S phase. For regional earthquakes, the headwave P_{n} is weak in comparison with \mathbf{P} and P^{*}. It is therefore desirable to have, perhaps, 5 seconds of pre-event detect signal so that those phases can be properly identified. It would then be possible to put tight constraints on depth and distance and provide detailed information on regional structure.

A short pre-event strip is also useful for indicating the background noise level and hence the operating reliability of the event detector. For these reasons, a 10 second pre-event strip precedes the recording of the actual event. As mentioned previously, the maximum total recording time per event is 180 seconds (including the 10 seconds pre-event time). However, this total time is adjustable because, for many applications, an event time of 90 seconds is sufficient.

Several users expressed concern about the possible saturation of the system in the event of swarms. A number of schemes were considered. A procedure of buffer swapping to be described below was adopted. Three such buffers or memories would allow an efficiency of 43 percent in the event of swarms. The system would saturate the available output data stream but would be able to record 43 percent of the time for transmission.

Magnetic tape was eliminated for event storage because of mechanical complexities. Reliable bubble memories are not yet available, and power requirements are high. Solid-state memories proved to be quite satisfactory. The breadboard contains two memories. When an event is identified, number one memory records 10 seconds of pre-event noise and, depending on the setting,

80 seconds of the event at a high-data rate. The stored event is then "dumped" at a lower-data rate through the satellite. It requires about 9 minutes for a $11 / 2$-minute event to be transmitted to the satellite.

The design was dependent on the choice of satellites. A dedicated channel on a synchronous satellite would permit continuous transmission (depending on the power budget of the DCP). In contrast, nonsynchronous satellites require satellite callup, random or timed data dumps. In both cases maximum data rates vary depending on antenna sizes, power, etc. While there are numerous communication satellites that are technically suitable, ground unit costs are related to the operating frequencies of the satellite. Thus, our requirement for low DCP unit costs eliminated many satellites from contention at the present. Most of the high volume satellites operate in the $1-\mathrm{GHz}$ (gigahertz) or $5-\mathrm{GHz}$ satellite allocations. Technology is not yet up to producing inexpensive and efficient transmitters at these frequencies. A typical 20 -watt transmitter at $2 \mathbf{G H z}$ is about 10 times as expensive and half as efficient as its $400-\mathrm{MHz}$ (megahertz) counterpart. In addition, because frequency slots are assigned within satellite transponders to a high percentage accuracy, the frequency control is much more expensive at the microwave frequency than at uhf (ultra-high frequency).

Accordingly, satellites with. uplink frequencies in the uhf range are preferred. As an example of the maturity of the uhf technology, a single-module power amplifier capable of generating a 15 -watt output signal from 150 mW (milliwatt) of drive at 400 MHz costs about $\$ 80$. A similar microwave power amplifier costs $\$ 1000$ and is half as efficient.

The most extensive network of satellites using a uhf data collection system (DCS) is the GOES system. In addition to its prime function as an imaging meteorological satellite, GOES has a
$400-\mathrm{MHz}$ uplink DCS. A simplified block diagram of the DCS system is given in Figure 3. Note that there are 200 DCP uplink c.'annels between 401.2 and 401.7 MHz . Each of these channels is $15-\mathrm{kHz}$ (kilohertz) wide and is intended to accommodate ASCII code at 100 bps (bits per second). The satellite, being synchronous, allows random dumping by the DCP whenever an event is identified and stored. Also, since the United Nations' World Meteorological Organization (WMO) protocol provides for a worldwide GOES system, it seems likely that a GOES type DCS will be available for at least the near future.

Therefore, the design and demonstration work was conducted, assuming the GOES DCS characteristics as the design driver. However, because the 100 bps restriction is relatively severe (and, in fact, represents a "worst-case" situation for all practical purposes), and since microwave transmitter technology is fast becoming mature, a modular approach was adopted which would allow an easy change of output data rate and transmitter frequency.

BASIC OPERATING PRINCIPLES OF SYSTEM

The output of a single-axis, high frequency (1 to 2 Hz) seismometer is continuously monitored by an automatic event detector ("P" picker). When an event is identified, up to 180 seconds of signal (10 seconds pre-event noise and 170 seconds of event) is recorded and stored in a solid-state memory at a sampling rate of 50 times per second and a 12 -bit word for signal resolution. A delay line allows the system to recover 10 seconds of pre-event signal after the event picker decides it has an event.

Upon completion of recording, the first memory system goes off the line and begins transmitting to the GOES satellite at 100 bps. During the 18 minutes required for the first memory to dump a
GOES DATA COLLECTION SYSTEM

$$
\begin{aligned}
& \text { ORIGINAL PAGE IK } \\
& \text { OF POOR QUALITY }
\end{aligned}
$$

3-minute signal to the satellite, a second memory is on the line to record the next detected event. For field use, particularly if swarms are expected, at least three memories would be required.

DEMONSTRATION HARDWARE

The demonstration breadboard was designed and constructed according to the following criteria:

Input signal	Anaiog
Bandwidth	25 Hz
Event length	180 seconds (maximum)
Resolution	12 bits
Output signal	Compatible with GOES (100 bps bi-phase)
Operating mode	GOES emergency event triggered
Power	Battery pack
Battery life	Six months (average 12 events per day)
Cost per field unit	Less than $\$ 10,000$, including DCP and radio set

A block diagram is given in Figure 4 and contains all the subunits of the breadboard. In what follows, the design of the demonstration unit on a subunit basis will be discussed.

The breadboard receives signals from an event simulator, a tape recorder, or a conventional discriminator. The prerecorded analog tapes were provided by the University of Alaska. The event simulator generates a damped harmonic signal electronically. The breadboard output is a serial-digital signal at the GOES rate of 100 bps. This signal is passed to a digital-to-analog converter for comparison with the input signal.

Figure 4. Block diagram of seismic DCP showing portion constructed in breadboard.

ANALOG CIRCUITS

Figure 5 shows the analog circuit block diagram, a detailed circuit diagram is shown in Sheet 2". The instrumentation preamplifier has a bandwidth of 50 Hz and a gain of two. This amplifier gain can be increased to 2000 by a component change. The high gain was not required for the breadboard because the tape recorded signal was already preamplified. The wide bandwidth of 50 Hz enables the event detector to determine event-occurrence time to within 10 milliseconds. With a $50-\mathrm{Hz}$ information bandwidth, the Nyquist sampling theorem dictates at least a 100 sample-per-second rate. The 12 -bit analog/digital (A/D) converter has additional filtering ($25-\mathrm{Hz}$ low pass) to minimize signal aliasing.

The demonstration breadboard could have been designed with one 12 -bit A/D converter followed by a digital filter and a divide-by-16 circuit. This approach was not used vecause: (1) using the digital divider and filter would have required more modules, and (2) this approach also allows an easy change of microprocessors since the entire event detector is isolated from the main data stream.

Digital Delay

A delay is required before buffer storage to:

1. Provide the experimenter with some pre-event noise for signal analysis.
2. Provide time for the microprocessor to calculate whether an event has occurred.
3. Provide pre-event time for the base station receiving system to obtain synchronization.
4. Provide time for the DCP transmitter to stabilize prior to sending an event signal.

[^2]
Figure 5. Analog circuit block diagram for breadboard.

A delay of 10 seconds appears to be adequate to perform these functions. A delay of 10 seconds is obtained by a 1024 word, 12 -bit-per-word CMOS RAM used as a first in-first out memory. If more delay is necessary, the delay time can be changed to a maximum 81.92 seconds by a wiring modification that changes the decoder input signals (Sheet 3, module E3). The decoded output resets the 12 -stage ripple counter module E1 at the required time. The output of the ripple counter also provides the addressing signals to RAM devices with address-state changes every 20 milliseconds.

Data delayed by the delay time is always being sent to the buffer memory module for possible storage. Recording in the buffer storage depends on the buffer storage control and gating signals that are under control of the microcomputer.

100 kb Buffor Memory.

There are several solid state technologies that can be used for a memory size of 100 kb ; i.e., core, plated wire, CMOS, NMOS, MNOS and magnetic bubble. Because of reliability considerations, mechanical devices (i.e., tape recorders) were not considered. Charge coupled devices (CCD) were not a candidate because of our need for a low operating rate of 100 bps . The operating rate has to be greater than 50 kbps for most CCD chips containing 4096 bits or greater because of "dark current" limitations. Plated wire is too expensive; sore dissipates too much power compared to the other solid-state devices. Metal-nitrate-oxide semiconductor (MNOS) devices are too expensive, ease of manufacture is poor, and the availability of second sources is also poor. A list of the candidate components and their characteristics for a 100 kb buffer memory is given in Table 1 .

The static CMOS RAM memory device was selected over the other candidates primarily because of the very low average power dissipation. Rejection of the magnetic bubble device was not primarily

Table 1
Memory Components Characteristics for Mass
Memory Application

	CMOS	DYNAMIC NMOS	MAGNETIC BUBBLE	STATIC NMOS
Manufacturer's Number	1 M6508	Intel 2116	TBM 0100	EMM 4044
Chip Density (bits)	1024	16384	92000	4096
Chip Organization	RAM	RAM	FIFO	RAM
Number of Different Voltages Required	1	3	4	1
Operating Temperature $\left({ }^{\circ} \mathrm{C}\right)$	-55_{+125}	-55_{+125}	$+15_{+35}$	-55_{+125}
Module Cap., kilobits	110.6	114.7	92	110.6
Average Power, watts	0.054	1.7	1.1	6.4
Module Component Cost (\$)	540	390	470	416

due to power requirements. The magnetic bubble device has the advantage that storage is nonvolatile and the device can be power switched. We did not use the device because its availability is poor at present and the ease of use in the design is difficult. A re-evaluation of the magnetic bubble should be conducted in a few years, when the device's performance, availability, and adaptability are improved.

A detailed schematic for each of the two $110 \cdot \mathrm{~kb}$ buffers is given in Sheet 7. Note, that the buffer is parallel organized (12 bits $\times 9216$ words). The storage elements are CMOS RAMS (1024×1). Operating length of each buffer can be changed by eight switches from 2048 to 9216 words in steps of 1024 words. This corresponds to event lengths of 41 to 184 seconds. (S-P range circles of about 250 kilometers (km) to 1700 km .)

Expht Detector

The event detection function is performed by a microprocessor that is programmed to process digitized seismic signals in real time. Interface to the rest of the system is particularly simple. Figure 6 shows the event detector interface signals. The only output interface signal used by the remaining modules is the event-detect signal; the event-status data, which would be used in a field unit, is not used here; this signal can be obtained via the data terminal. The control signals and program constants are on front-pa;el switches and are read only during program initialization.

There are several microprocessor systems that could have been used. A list of candidate microprocessors is given in Table 2. The CMOS CDP 1802 was selected based on the following criteria:

1. J.nw power
2. Add time
3. Support chips available
4. Keliability (only microprocessor on GSFC preferred parts list).

The CDP1802 microprocessor is a single-chip, 8-bit, static microprocessor fabricated in CMOS technology. The CDP1 802 thus he; all the advantages of CMOS technology;i.e., low power dissipp..,n, sincic wide-range power supply, full operating temperature range and a single-phase clock. Our system uses a 5 -volt power supply and a $2-\mathrm{MHz}$ clock. (With a $2-\mathrm{MHz}$ clock, the machine-cycle time is 4 m .i.roseconds and the instruction cycle time is $\mathbf{8}$ microseconds.)

Refer to Sheets 4,5 , and 6 for the event detector module details. Note that Sheet 4 shows the interface and control circuits and the connections to the CDP1802 microprocessor. Sheet 5 diagrams the 4 K words of RAM (used as working storage) (32, CDP1822's). Sheet 6 shows the 4 K

Figure 6. Event detect interface signals.

Table 2
Candidate Microprocessors Characterization
With a $2-\mathrm{MHz}$ Clock

Sart Number	Process	Power (Milliwatts)	Data Bus Width	Add Time (Microseconds)
SBP 9900	1^{2} L	500	16	9
TMS 9900	NMOS	1000	16	15
CDP 1802	CMOS	4	8	8
1 M 6100	CMOS	5	12	10

words of ROM (4, M 2700) and 32 words of RAM used fot program and register storage). Only 2K words of ROM are actually needed; 1 K words for a standard utility program and IK words for the seismic processor program. The utility program is used to communicate with the data terminal.

Control Circuitry

The control circuitry is used to generate:

1. Analog-to-digital conversion sample pulses
2. Buffer-control signals
3. Multiplexer-control signals.

All of these signals are derived from combinations of the $2-\mathrm{MHz}$ clock; the event-detect signal and the buffer full/empty signal.

The 2-MHz clock is divided down to generate all the sampling and timing pulses (modules $\mathrm{Cl}, \mathrm{ClO}$, Sheet 8). Also derived are the analog-to-digital converter (ADC) sampling pulses which are continuous at either 50 cps (12 -bit ADC) or 100 cps (8-bit ADC).

Figure 7 shows the buffer timing sequences that are generated on the control circuit board. Until an event-detect signal occurs, both buffers are in standby. When the event detector declares a valid event, the event-detect signal triggers buffer 1 into operation. Buffer 2 remains in standby. Soon after the event-detect signal occurs, the buffer-1 clock starts operating at its high rate (50 cps) and the MWR-1 signal enables a write operation. Buffer-1 initialization occurs when the first clock pulse causes memory location one to be written into. After buffer 1 is full, the " 1 full" signal is generated. The buffer-full signal starts a read operation clocked at the GOES rate (100 bps). This is done through the MWR signal that places the memory into a read state. The memory addressing is organized so that the first-clock pulse after full signal enables reading from memory location one (the memory is a first-in/first-out type). After all memory cells are read, a (1 empty) signal is generated which places buffer 1 into standby. However, if another event occurs between the bufferfull and the bufferempty signal, buffer 2 begins a write operation. Buffer 2 will not perform a read operation until buffer 1 has received an empty signal, and a buffer- 2 full signal is generated.

The data-ready signals, diagramed in Figure 7, control the multiplexing of the two buffer output signals into one signal during buffer read times (Sheet 9). In a field DCP, this signal would be biphase modulated and then sent to the transmitter. In our unit, this signal is sent to a digital-toanalog converter, then to a visual recorder. The recorder used is a standard Sprengnether three channel drum recorder. The three signals recorded during unit-performance testing are: (1) the analog signal after the preamplifer, (2) the event-detect signal, and (3) the delayed processed data from the buffers read out at the equivalent of 100 bps .

The unit was constructed of CMOS DIP integrated circuits mounted on Augat circuit boards with connections by wirewrap. These boards are mounted into a standard $48-\mathrm{cm}$ (19-inch) rack chassis,

Figure 7. Buffer timing diagram.
8.5 cm ($31 / 2$ inches) high. Power supplies are mounted separately. The unit was partitioned into boards as follows:

Board Function
1 Analog circuitry, control logic and multiplexing
2 Microprocessor, associated random access memory and read only memory

3 Buffer memory \#1
4 Buffer memory \#2
The system was partitioned so that: (1) a different type microprocessor module could easily be added for additional evaluation, and (2) buffer memory could easily be expanded if necessary. All controls are front-panel mounted with exception of the buffer-length switch.

EVENT-DETECTOR ALGORITHM AND ITS IMPLEMENTION

The event-detection program, used on the 1802, is based on an algorithm developed by Rex Allen (1978) for the automatic detection and timing of seismic events from a single seismometer; however, modifications were necessary to run the program on the 8 -bit RCA 1802 microprocessor. The program is an interrupt-driven (real-time) task that identifies events to within 10 milliseconds. The program also evaluates the accuracy of its picks, thus eliminating the recording of events generated from noise sources such as vehicle traffic.

Appendix 3 contains the 1802 assembly code, a memory map, and the tables for conversion of control constant values to switch settings. Appendix 2 contains a running description of the Allen (1978) algorithm as implemented for the 1802.

Data from the 8 -bit analog/digital converter is searched for the possibility of an event according to Allen's criteria. The characteristic-function calculation is the primary time consumer of this event-search mode operation. Ideally, the whole event-search process for one sample should not take more than 10 milliseconds. In practice, the average time was calculated as 9.64 milliseconds, and in the worst case, 16.4 milliseconds. In actual use, we found that most samples (85 percent) could be handled in 10 milliseconds. When the program requires more than 10 milliseconds to process the sample, the next sample is ignored. The consequences of this time constraint are discussed in the engineering tests section.

Once a potential event is registered, the program enters the event-validation mode to test whether the suspected event passes duration, frequency, and amplitude criteria. On the average, this process should take 6.52 minutes, and in the worst case 13.28 milliseconds. In practice, we have not observed undersampling during the event-validation mode.

The current formulation of the algorithm will store up to 256 event initiation times in the form of clock cycles since initialization. Interpolation to a fractional clock cycle is not done. In addition to the event times, the zero crossings and peak amplitudes used in the analysis (up to 128) are also available. The memory lap in Appendix 3 shows that of the available 4 K words of RAM, only about 1.5 K words are used. Of the 4 K words of PROM, 1 K words are required for the eventdetection program, while 1 K words are used for the utility. This small RAM/ROM requirement indicates a possibility of sharing the memory resources between two processors to decrease the apparent cycle time. Although this alternative might permit faster processing of individual samples, multiprocessors have not been explored here.

The expected time requirements during each of the processor modes could be improved by using high-speed multiply/divide chips as peripheral devices to the 1802 processor. Although 1802 processor compatible forms of these chips are not yet available, it seems likely that such devices will appear in the immediate future.

Enginearing Evaluation

The completed unit was subjected to several tests designed to evaluate the system's ability to detect events over a wide range of input-signal parameters. These measurements were then used to calculate: (1) the probability of false detection on broadband noise, (2) the probability of under sampling and, (3) the time to detect and verify an event.

The sensitivity to noise was measured with a "white" gaussian noise signal (i.e., no impulse noise). The probability of a false detection and the ability to complete the search and validate tasks in the prescribed time were measured. The statistical behavior of this type of noise exceeds, within the design bandwidth, the current implementation of the program's validation test (20 zero crossings in 2 seconds). Theoretically, additive gaussian noise in a $50-\mathrm{Hz}$ bandwidth should have 38 maxima per second and 50 zero crossings.

A graph of the prcbability of false detection as a function of noise and gain is given as Figure 8. The noise levels are in millivolts per square root hertz measured after the preamplifier (boaciwidth 50 Hz). Also plotted along the abscissa are the aralog/digital converter quantization levels. With the program gain set to maximum, the figure shows that the probability of a false trigger increases significantly as the noise level rises above one quantization interval. For this reason, the noise level should be adjusted to less than 5 millivolts.
arkfohinal page is' OE BOOR QUALITX

NOISE LEVEL IN mv/Vhz AND QUANTIZATION LEVEL

The predicted number of instructions for the program to process one sample in the search and validate modes, with a full scale signal of 127 , is as follows:

Mode	Worst Case		Average	
		At Best		
Search	2050		1205	
Validate	1650		815	
			895	
				705

For a $2-\mathrm{MHz}$ clocking rate (which yields 8 microseconds per instruction time) there will be 1250 instructions within the 10 millisecond data sampling interval. It appears that under worse case conditions the central processing unit (CPU) data input could be under sampled, since the maximum number of instructions per sampling interval is 1250 . Measurements were made to check the efficiency on real-time data. The algorithm efficiency was measured by counting the CPU external flags (EF) that request transfer of data into the $2 P$. EF pulses were counted over a 10 -second period for various input noise and signal levels. Over a 10 -second period there should be 1000 transfers.

The following results were obtaine i :

1. No under sampling was detected with noise levels of $5,10,20$, and 30 millivolts. With the CPU programmed for maximum gain, the number of instructions to process these noise levels varied from 2 to 75 per EF sample time. The number of instructions was directly related to the noise level. As expected, the maximum gain setting yielded the largest running time.
2. No under sampling was detected when a simulated event was used as a signal. The simulated event is an electronically generated damped harmonic sinewave with a natural frequency of 10 Hz and a decay time of about 3.0 seconds (Figure 9). Under sampling was checked with various peak signal levels (4,2 and 1 volt) and the CPU gain.

OiztiNAL PACE IS
OE POOR QUALITX

(a) SINGLE EVENT

(b) COMPOUND EVENT

Figure 9. Electronically generated event signals, vertical axis $2.0 \mathrm{v} / \mathrm{cm}$, horizontal axis $0.5 \mathrm{sec} / \mathrm{cm}$; a. single arrival; b. double arrival (P, S).
3. Under sampling was detected when a compound signal was used. A compound signal is two simulated events that occur within one second of each other; i.e., double arrivals or \mathbf{P} and S phases (see Figure 9b). Under sampling was detected when the CPU was operating at maximum gain and the peak-input signal was 4 volts. Under these conditions the probability of missing a data transfer into the CPU was calculated to be 0.011 .
4. Figure 10 shows the relationship between the start of an event and the event-detect signal. Measurements obtained from over 200 trials, with both simulated and compound signals, show a variation from 0.1 to 3.0 seconds from the start of an event to the leading edge of the event-detect signal, $t_{\mathbf{D}}$. Figure 11 is a plot of the mean time to detect and verify a simulated signal t_{D}, as a function of peak-signal level and the CPU gain. These tests showed that a 10 second delay is sufficient to provide the computational time needed to determine that a noncultural event has occurred.

PERFORMANCE TESTS

As part of the evaluation, the processor unit was connected to a realtime analog signal from an auxilliary short-pctiod vertical seismometer (SPZ) at the Geophysics Branch,Ellicott City, Maryland, seismic station (identification code ECM). This signal is unfiltered and has a bandpass appropriate to the seismometer and voltage-controlled oscillator responses (0.1 to 30 Hz). The ECM station is located just east of the intersection of I-40 and I-70 west of Baltimore, Maryland. The instrument package is on a poured concrete slab in contact with the banded member of the Baltimore Gneiss. Because of its location, unfiltered signals from ECM contain large numbers of heavy and light vehicle signatures. I -70 is, in fact, one of the main truck routes into Baltimore. Local earthquakes and close mine blasts are not frequent enough to provide the kind of detailed evaluation of the event

Figure 10. Timing relationship between the start of a simulated event (a) and the event-detect signal (b). Vertical scale $5 \mathrm{v} / \mathrm{cm}$, horizontal scale $0.5 \mathrm{~s} / \mathrm{cm}$.
MEAN TIME TO DETECT AN EVENT IN SEC.

PEAK SIGNAL LEVEL, IN VOLTS

Figure 11. Mean time to detect an event as a function of signal level and CPU gain.
recognition algorithm on seismic signals as reported by Allen (1978). The relatively low frequency of such events only allows us to show that the Allen algorithm performs on such blasts and earthquakes in a manner consistent with Alen's observations in a much more active seismic environment. An example of the performance on noncultural signals is given in Figure 12.

Within a typical seven day period, four mine blasts closer than 200 km are detected at ECM. Also, there are two known areas of low-level seismicity within 600 km of ECM (see Bollinger, 1973 and Sbar and Sykes, 1973, for example). The Lancaster, Pennsylvania, area has been responsible for about three events per year and the magnitudes are typically well under $\mathrm{mb}=3.0$. The second zone is in west central Virginia and has averaged two events per year, also with magnitudes well under 3.0.

Athough the low number of close noncultural signals does not permit the quick acquisition of meaningful performance statistics on such signals, the extensive vehicular traffic near ECM allows a definitive analysis of the Ailen algorithm's ability to discriminate between cultural signals and real seismic events. To illustrate: the unfiltered SPZ output contains about 40 truck and 20 automobile signatures in a typical 4-hour period centered around one of the "rush hours." There is also a clear diurnal cycle in the high-frequency background noise with peaks during the rush hours. As would be expected, there is a strong decrease in the high-frequency background and in the number of high-frequency signatures on weekends and holidays.

Following is a summary of the performance of the system on noncultural signals. The results are presented as the probability that the algorithm will fail to detect an event in a particular

EXAMPLES OF SIGNAL PROCESSING LOCAL MME BLAST
EVENT
DETECT
SIGNAL

Figure 12. Examples of signel processing by the breedboerd unit. The evem-detect pulses corresponding to the events displeyed are marked with triengles.
distance range are based on a total of 80 events.

- False hits/possible false hits

10 to 25 percent

- Activity level of 100 bps channel
- Event miss probability $D>600 \mathrm{~km}$
$1000 \mathrm{~km}>\mathrm{D} \geqslant 600 \mathrm{~km}$
D $>1000 \mathrm{~km}$ 20 to 40 percent

0 percent
25 percent
100 percent

In our formulations, Allen's (1978) algorithm has a soft cutoff at around 1000 km due to our choice of averaging technique and the azcentuation of the high frequency sensitivity by the form of Allen's characteristic function. Since the characteristic frequency of seismic signals decreases with increasing distance, the algorithm will not respond to distant signals unless they are stronger than normal.

The best indication of the performance of the system on cultural signals is to ineasure the percentage of time that the 100 bps output is active. In general, the activity level is a measure of the rate of false triggering. Also, the truck signature is of characteristic frequency greater than 10 Hz and shows two short duration spikes of about twice the amplituce of the rest of the e:enature. T : signature provides all the necessary elements for a severe test of the rejection of cultural s: , 7als and occurs often enough to yield good statistics in a reasonable time.

Activity on the 100 bps channel is, of course, heavily dependent on the choice of opera: $n g$ constants input to the microcomputer. With an optimum set of cons'ants, the activity le : is between 10 and 20 percent. The same set of constants was used to generate the performance stictistics on noncultural signals reported above. Since the noise environment was intentionally made more
severe (no filtering) than would normally be the case, the rejection of cultural signals should be nearly perfect in most applications.

Since the number of noncultural signals is so small, we tested the buffer swapping procedure with cultural zignals. A set of constants was selected to give a pick on each vehicle signature with a signal-to-noise ratio greater than $\boldsymbol{\sim}$. . The buffer lengths were set for 90 seconds and the system was operated through a complete rush-hour peak (150 minutes). The number of vehicle signatures with suitable signal-to-noise ratio was compared to the number of event-detect signals and the number of vehicle signatures in the 100 bps output. Since there are about five signatures per minute at the peak of the rush hour, the system was operating at the saturation level for two buffers. The predicted efficiency is $\mathbf{2 8}$ percent and the observed efficiency was 29 percent. The difference is probably due to the nonrandomness of the time of occurrence of the signatures.

Design of a Complete Seismic DCP

Figure 13 shows five remote data collection platforms and a central data collection station. This is a basic form of a GOES-based seismic data collection system. Each DCP is event triggered and uses a single DCS channel. The DCP radio sets are small $402-\mathrm{MHz}$ transmitters which have a signal bandwidth corresponding to 100 bits per second.

The DCP required EIRP is 48 dBm to communicate at a biterror rate of 10^{-6}. A 10 -watt transmitter with an antenna gain of 8 dB is adequate. Figure 14 shows the central station's received signal processing line. This is a low technical risk area since there is nothing unique at the receiver as all components have been proven under operating conditions.

Figure 13. System diagram showing a five DCP network with a central station.

Figure 14. Received signal processing at the central station.

Figure 4 is a blozk diagram of the full DCP. The event-detector output signals to be telemetered along with event waveform are the event-detect signal, direction of first motion, event confidence measure, and number of timing pulses from event first zero crossing until the event-detect signal acknowledges an event nas occurred. The DCP transmitter will be power switched under control of the microprocessor to increase the battery life time.

A complete data collection platform unit would consist of:

1. Seismometer
2. Event detector with dual buffering
3. Transmitter (GOES compatible, 10 watts)
4. Cross-yagi antenna
5. Battery power pack.

A power profile was calculated for six months operation. This profile assumes an average of 12 events per day with the DCP/transmitter operating for 1260 seconds per event (180 seconds record and 1080 seconds playback). Also included in the power calculation are the following voltage and current requirements:

Transmitter (10 watts)	12.5 volts at 5 mA (milliampore) idle, 2.5 A trans.
Event detector	12.0 volts at 5 mA
	5.0 volts at 12 mA
	-5.0 volts at 2 mA.

Power profile dictates that the battery power pack should have the following capacity:

12 volts at 1900 ampere-hours

5 volts at 430 ampere-hours.

It would be possible to derive the 5 volts from a 12 -volt pack. The estimated cost for a DCP, excluding the seismometer, is:

Event detector and dual buffers	$\$ 13,500$
Transmitter and antenna	3,300
Battery pack	
Total	$\mathbf{5 0 0}$

The cost is based on using:

1. Ceramic CMOS integrated circuit packages
2. Dual 108 -kilobit buffers
3. Single unit cost (i.e., no quantity discount)
4. Wirewrap construction.

The cost of the processor could decrease by as much as $\$ 6,000$ in large quantities. This cost savings would appear as lower costs for the CMOS parts, testing, and packaging. Also, printed circuit packaging techniques could be used instead of the more costly wirewrap boards.

The cost of the transmitter and antenna assumes using a HANDAR 524A SMS/GOES data collection platform and a high gain crossed yagi. The HANDAR unit contains a GOES compatible formatter, 10 -watt transmitter, and power conditioning circuitry. The cost shown above is for a single unit procurement. For a large procurement (greater than 10 units) the total cost of a DCP should drop to $\$ 11,000$.

OPERATION OF AN EVENT LOCATION NETWORK USING THE SEISMIC DCPs

To illustrate the use of the seismic DCP, we examine the implementation of a location network for large events in South America. The purpose of this section is to show how a small network of DCPs will allow the location of potentially damaging earthquakes with sufficient dispatch to allow mobilization of civil disaster forces should the circumstances warrant. This is perhaps the most elementary application of the seismic DCP concept.

The following goals are assigned to the network: locate any earthquake within the Andean region of South America whose body wave magnitude is $\geqslant 5.0$ within two hours. The hypocenter must be located to ± 0.1 degree in latitude and longitude and characterized as shallow, intermediate, or deep focus.

The stations to be implemented were selected from the list of World Wide Standard Seismograph Network (WWSN) and array stations on the South American mainland. For the eight stations shown in Figure 15, a three minute P-S time circle will permit at least three stations to transmit \mathbf{P} and S arrivals for events in the populous part of the western active area. Coverage is not so complete for the less populated areas of western South America (i.e., Tierra del Fuego) and the relatively inactive eastern area of Brazil.

According to a study by Berrocal (1976), stations in continental South America observed 113 events during 1973 with $\mathrm{mb} \geqslant 5.0$ in the region bounded by latitudes $14^{\circ} \mathrm{N}$ and $56^{\circ} \mathrm{S}$ and longitudes $30^{\circ} \mathrm{W}$ and $90^{\circ} \mathrm{W}$. Although fluctuations in this number occur on a yearly basis, the distribution of stations and the quality of data used by Berrocal make it extremely unlikely that any

Figure 15. Eight station network in South America showing three minute P and S range circles.
events with $\mathrm{mb}>5.0$ were missed. Accordingly, the expected data load is about 905 station events per year. This will not tax the capability of any individual seismic DCP.

To avoid transmitting unneeded events, each DCP would calculate a magnitude based on the usual $\log (A / T)$ (amplitude/period) calibrations to decide whether the event should be transmitted. Since the event buffer would have to be held during the calculation, the buffer swapping technique would be needed to avoid mssing an event.

The GOES platform radio sets transmissions may be initiated in three ways: (1) The DCP may be polled by using interrogate channels; (2) the DCP may be activated by an internal timer on a regular basis, one or more times a day; and (3) the DCP may begin transmitting when a sensor threshold has been exceeded. These different modes are called: interrogate, self-timed, or emergency.

After considering the objectives, the "emergency mode" was sclected for the system baseline design. Advantages of the emergency mode over the other operation modes are:

1. Requires a smaller DCP storage capacity. The emergency mode requires 108 kilobits, whereas the other modes require 324 kilobits for transmission on a 6-hour schedule.
2. Requires a shorter playback time and dissipates lower power because the memory is smaller.
3. Central station has near real-time monitoring of events.
4. Requires only one master clock which is located at the central station. This is possible because the DCP delay can be measured during deployment; the transmission time through the GOES satellite system can be accountable, and the time from the event's first zero crossing to event trigger pulse can be determined by the microprocessor and transmitted from the DCP with the event record.

The major disadvantage of the emergency mode is that eight dedicated GOES channels are required versus one channel for the other modes. Also, an inoperative DCP could go unnoticed for several days. A combination mode, in which the DCP returns housekeeping data once every six hours and operates in the emergency mode as well, may be the most desirable.

The receive site requirements are modest. The DCS downlink from GOES is in the $1.7-\mathrm{GHz}$ region. Microwave receiver technology for this kind of application is mature and the antennas are not very costly. Since the GOES spacecraft are in synchronous orbit, the ground antenna need only be positioned one time. Baseband signal processing is simple in the emergency mode since the exact baseband frequency for each DCP is known. A squelched discriminator can be used for each baseband signal with the squelch signal used to alert the data processing equipment.

The data processing requirements are also modest. The basic analysis consists of two phases. In the first phase, the individual bit streams are converted to analog traces, timing information inserted and the traces are displayed for an analyst's evaluation. At the same time, a preliminary hypocenter can be computed from the first arrival times reported by the DCP's and the expected arrival times for other than main P can be marked. S arrivals, where present, would be selected. In the second phase, the analyst's modifications would be used to calculate the final hypocenter and the individual traces would be output in final form. Neither of these tasks requires a particularly sophisticated or expensive computer. A microcomputer with video display, disk pack and hard copy plotter would be sufficient. Purchased now, the required hardware should cost much less than $\$ 20,000$.

The DCPs are intended to operate unattended in the field. The only anticipated need for regular interventions would be the battery changes. This can not be avoided since the high power requirements (10 W rf output for 18 minutes per buffer transmission) require high capacity batteries. Such batteries normally can not be recharged by solar panels.

Field setup would include:
a. Seismometer implacement and calibration. The DCP will need the necessary constants for a $\log (\mathrm{A} / \mathrm{T})$ magnitude calculation.
b. Processor activation and checkout. The noise characteristics of the site will determine the digital and analog constants. Since this will vary from site to site a certain amount of "cut and try" will be necessary.
c. Transmitter activation, antenna pointing, and delay measurement. Antenna pointing angles can be calculated beforehand. The individual delay measurements can be made by initiating a transmission at a carefully measured time. The DCP clock, the delay transmission initiation time, and the location of the DCP (to a few meters) can be set by observations of the Global Positioning System satellites during installation and activation.

SUMMARY

Our development effort has shown that there is no technical risk in building a field worthy seismic DCP. Because of the advent of low power digital and analog electronics (in our case CMOS), a field processor would require only a modest fraction of the total power budget. The power requirements of the DCP are dominated by the transmitter.

The major improvement over previous seismic signal processors is the use of the Allen (1978) event-recognition scheme. In the presence of severe cultural noise, Allen's algorithm proved to be nearly perfect in its rejection of cultural signals. Our implementation on the CDP1802 microprocessor required only modest amounts of ROM and RAM.

The processor could be added to an existing GOES DCP with little difficulty. The digital format and bit rate costs nothing in terms of information content but does require a relatively long period of transmitter activation. The physical size of a field processor would most likely be about one quarter the size of an automobile battery.

Operated in a dedicated network, through GOES, eight seismic DCPs would allow the location of large events ($\mathrm{mb} \boldsymbol{>} 5.0$) in South America within an hour of the event onset. Such a network would not tax the capabilities of the DCP design and would represent no technical risk in its implementation.

REFERENCES

Allen, R. V., 1978, Automatic Earthquake Recognition and Timing from Single Traces, BSSA, 68, pp. 1521-1532.

Allenby, R. J., W. J. Webster, Jr., and J. E. Painter, 1977, Satellite R -laying of Geophysical Data, NASA/GSFC X-922-77-273.

Berrocal, J., 1976, in Programa Sismo Unificado CERESIS-AID-NASA-USGS, CERESIS, Lima, Peru.

Bollinger, G. A., 1973, Seismicity of the Southeastem United States, BSSA, 63, pp. 1785-1808.
Sbar, M. L. and L. R. Sykes, 1973, Contemporary Compressive Stress and Seismicity in Eastern North America; An Example of Intra-Plate Tectonic, Bul. G.S.A., 84, pp. 1861-1882.

Stewart, S. W., 1977, Real-Time Detection and Location of Local Seismic Events in Central California, BSSA, 67, pp. 433-452.

APPENDIX A OPERATING INSTRUCTIONS

Operationd Procedure

The following describes the operational procedure for the seismic detector and the procedure to communicate with the system microprocessor via a silent 700 -data terminal.

Pomer

1. Press power-on switch, located on power chassis, to apply power to seismic detector. Power lamp indicates power is applizd to detector.
2. Switch silent 700 -terminal power on.
3. Switch helical-recorder power on.

Resent

Press reset switch on seismic detector front panel. This places the microprocessor into initialization state and clears buffer memory. Event detect, record, and playback indicators are in off state.

Run Utility Prorem

1. Press utility program switch.
2. Depress silent 700-terminal keyboard carriage return key, print head returns to left margin and types an asterisk. The asterisk acknowledges that the microprocessor address pointer is at memory location 0000 . For programming instructions refer to "User Manual for the CDP1802 Cosmac Microprocessor," RCA-MPM-201-B.

Run Solimic Prorym

1. Place unit into utility program state.
2. Enter master program start address into memory location 0000 by typing keys
$!\mathrm{M} 0000 \quad \mathrm{CO1000}$
3. To verify, start address is stored into microprocessor memory type.

> ?MONO
3.
4. Terminal response is to type

0000
C010
00.
5. Press micro reset switch to ensure microprocessor is in initialization state.
6. Press program start switch to initiate Rex Allen's seismic program.

Seismic program will operate between two states (test and verify) without additional co :rolling. When an event is verified, the event indicator is turned "on" for approximately one second and the record indicator is turned "on" and remairs on until memory buffer number one is filled.

Buffer filling timing is predetermined by the status of switch E28 which is located on memory board (see Sheet 7). Filling time can be set from 10.2 to 153.6 seconds. (See Table A-1 for available record times.) After the buffer is filled, the record indsator goes out and the playback indicator is tumed on. Playback time is six times record time. If a second event occurs while buffer one is in playbick state, the event is stored in buffer two and both the record and playback indicators are energized; buffer two will play back after buffer one has completed its piayback.

Table A-1
Buffer Memory Record and Playback
Times and Switch Position

Switch Position	Time, Seconds	
	Record	Playback
2	10.24	61.44
3	30.72	184.32
4	51.2	307.2
5	71.68	430.08
6	92.16	552.96
7	112.64	675.84
8	133.12	798.72

Program Constants

Constants C_{1} through C_{5} are entered into program when microprocessor is in initialization state (reset). The programmed constants remain unchanged until the constant switch position is altered and the unit is reset. Table A-2 relates the constant switch positions to program value.

Event Statistics

Event peak vaikes and time of occurrence refereneed to first zero crossing are stored in the RAM memory. Memory location 0035 : ores the number of peaks. Memory location starting at 0100 stores the time and peak values. There are three paired hexidecimal words per detected peak with the following format:

$$
\begin{aligned}
& 3 \text { paired hex words }
\end{aligned}
$$

Table A-2

Gain, C_{1}		Weight, C_{2}		Short Ave, C 3		Long Ave, C_{4}	
Code	Value	Code	Value	Code	Value	Code	Value
0000	0.5	0000	0	00000	0.2	00000	0.005
0001	0.6	0001	0.15	00001	0.225	00001	0.0075
0010	0.7	0010	0.3	00010	0.25	00010	0.01
0011	0.8	0011	0.45	00011	0.275	00011	0.0125
0100	0.9	0100	0.6	00100	0.3	00100	0.0175
0101	1.0	0101	0.75	00101	0.325	00101	0.02
0110	1.1	0110	0.9	00110	0.35	00110	0.0225
0111	1.2	0111	1.0	00111	0.375	00111	0.025
1000	1.3	1000	1.05	01000	0.4	01000	0.0275
1001	1.4	1001	1.20	01001	0.425	01001	0.03
1010	1.5	1010	1.35	01010	0.45	01010	0.0325
		1011	1.50	01011	0.475	01011	0.035
		1100	1.65	01100	0.5	01100	0.0375
		1101	1.80	01101	0.525	01101	0.04
Threshold, C_{5}		1110	1.95	01110	0.55	01110	0.0425
				01111	0.575	01111	0.045
Code	Value			10000	0.6	10000	0.0475
00	4			10001	0.625	10001	0.05
01	5			10010	0.65		
10	6			10011	0.675		
11	7			10100	0.7		
				10101	0.725		
				10110	0.75		
				10111	0.775		
				11000	0.8		

where n is the value recorded in location 0035, and i references i peak and runs from 0 to n. The event statistics can be obtained without disturbing the contents in the buffer. The procedures to be used to enter into utility run is made by using the micro reset switch. Events statistics have to be obtained from memory before the program goes into another test sequence.

Helical Recorder

Refer to Sprengnether VR-60 helical recorder operation manual for operation, calibration, and maintenance procedures.

This is a three-channel recorder. Channel one records the real-time signal that has been amplified and filters to 50 hertz. Channel two records the event-detect signal which is binary. Channel three records the delayed playback signal, which is $1 / 6$ the rate of channel one signal. Channel three signal has been digitized, stored, and played back at the GOES channel rate of 100 bits per second. This signal is converted back to an analog signal before it is sent to the helical recorder.

Event Detection Program Flow

1. Initialize and reset flags

Read constants ($\mathrm{C}_{1}-\mathrm{C}_{5}$)
$i=1$
2. Input digital data $R_{1}, i=i+1$
(1) convert to 2 's complement
(2) $\mathrm{R}_{\mathrm{i}}=\mathrm{C}_{1}{ }^{*} \mathrm{R}_{\mathrm{i}}$
(3) Calculations:

$$
\begin{aligned}
& R_{i}=C_{2} *\left(R_{i}-R_{i-1}\right) \\
& E_{1}=R_{i}^{2}+\Delta R_{i}^{2} \\
& \alpha_{1}=\alpha_{i=1}+C_{3} *\left(E_{i}-\alpha_{i-1}\right) \\
& \beta_{i}=\beta_{i-1}+C_{4} *\left(E_{i}-\beta_{i-1}\right)
\end{aligned}
$$

3. Completed 2 second average?
(i.e., $\mathrm{i} \geqslant 200$)
0.1 t Go to 4
0.2 f Go to 2
4. Compute reference level ($\boldsymbol{\gamma}_{\mathbf{i}}$)

$$
\gamma_{i}=C_{5} * \beta_{i}
$$

5. Short term average abruptly increased?
(i.e., $\alpha_{1}>\beta_{1}$)
0.1 t Go to 6

0.2 f Go to 2

6. Save potential hit onset values
$0.1 \mathrm{~T}_{\mathrm{o}}=\mathrm{i}$
C. $2 \mathrm{~A}_{\mathrm{o}}=\mathrm{R}_{\mathrm{i}}$
$0.3 \mathrm{D}=\mathrm{R}_{\mathrm{i}}-\mathrm{R}_{\mathrm{i}-1}$
$0.4 \mathrm{M}=1$
$0.5 \mathrm{~S}=0$
7. Save provisional peak
$P=\left|R_{1}\right|$
8. Input digital data, $\mathrm{i}=\mathrm{i}+1$
0.1 Convert to 2's complement
$0.2 \mathrm{R}_{\mathrm{i}}=\mathrm{C}_{1}{ }^{*} \mathrm{R}_{\mathrm{i}}$
0.3 Celculations:

$$
\begin{aligned}
& R_{1}=C_{2} *\left(R_{1}-R_{i-1}\right) \\
& E_{1}=R_{1}^{2}+\Delta R_{1}^{2} \\
& \alpha_{1}=\alpha_{1-1}+C_{3} *\left(E_{1}-\alpha_{i-1}\right)
\end{aligned}
$$

9. Zero crossing?
(i.e., $\mathrm{R}_{\mathrm{i}}=0$)
0.1 Go to 11
0.2 f Go to 10
10. $\left|\mathrm{R}_{\mathrm{I}}\right|>\mathrm{P}$?
0.1 t To to 7
0.2 f Go to 8
11. 128 zero crossings recorded?
(i.e., $M>128$)
0.1 t Go to 13
0.2 f Go to 12
12. Record zero crossing
$0.1 \mathrm{~T}_{\mathrm{M}}=\mathrm{i}-\mathrm{T}_{\mathrm{o}}$
$0.2 \mathrm{~A}_{\mathrm{m}}=\mathrm{P}$
$0.3 \mathrm{M}=\mathrm{M}+1$
13. Has 2 seconds passed since potential hit?
(i.e., $\mathrm{i}-\mathrm{T}_{\mathrm{o}} \geqslant 200$)
0.1 Go to 14
0.2 f Go to 8
14. More than 40 zero crossings?
(i.e., $M>A 0$)
0.1 Go to 15
0.2 f Go to 2
15. Declare significant event (set Q), and compute continuation criterion $\sigma=\mathrm{f}\left(\mathrm{G}, \mathrm{T}_{\mathrm{m}}, \mathrm{M}\right)$
16. $\alpha_{1} \geqslant \sigma$?
0.1 t $\mathbf{S}=0$, reset small count counter
$0.2 \mathrm{~S}=\mathrm{S}+1$
$0.3 \mathrm{~L}=4+\mathrm{M} / 4$, value of S at which event is over
17. Is the event over?
(i.e., $S>$ L)
0.1 Go to 18
0.2 f Go to 8
18. Declare event over (reset Q)
$0.1 \mathrm{i}=0$
0.2 Go to 2

0003	0049	TEMP=1139					
0003 1	0050						
0003 (0051	CONT=341					
0003	0052	GDF=845					
0003	0053	H1TS=1147					
0003	0054	TIMESE40100					
0003	0055	HTIMES=00400					
00031	0056	READ=niEAO $\quad .$. READ SUBROUTINE					
0003	0057	MPLY=\#12C0 .. MPLY SUEROUTIME					
0003	0058	MEAT $=13130$					
0003	0059	-					
0003 ;	0060	.					
0003 :	0061	.. * GERM ** MAIN PRDGRAM					
0003 ;	0062						
0003	0063	.					
0003 :	0064	.					
0003	0065	.					
0003 :	0066		ORG	31000	. . Star	ADDRESS	
$1000 \mathrm{F807} \mathrm{\%}$	0067		LII	GERMA	. .		
1002 AF	0068		PLD	RF			
1003 F810\%	0069		LDI	A. 1 (GERMA)	.		
1005 BF:	0070		PHI	RF	.		
1006 DF;	0071		SEF	RF	.		
1007 F808:	0072		LDI	C1x			
1009 A73	0073		PLD	R7	.		
100 A F8006	0074	LDI		0			
100 CEF	0075	PHISEX		R7	.		
100 DEF	0076			R7	\cdots		
100 EF 6	0077		JMF	7	REA	E1x	
100 F FROF;	0078		GNISTR		:0F	. .	
1011573	00779				RT		
1012 FE ;	0080						
1013 FC00:	0081			C1T ..	LODK UF'		
1015 A8:	0082			R8			
1016 F817\%	0083			H. 1 (C1T)			
$101888 ;$	0084	PHI		RE			
1019488	0085	LDA		R8 ..	SAVE C1		
101m $60 ;$	0086			- .			
101 EF ;	0087	STR		R7			
$101 \mathrm{C} 08:$	0088	(1)	LINH	R8			
101560%	0089		12\%		-		
101 E 57	0090	析	STR	R 7 ..			
101F F814;	0091	(LDI	cs x	- WANT	CSH	
1021 A7:	0092		FLD	$\mathrm{F7}$.			
102 Ec 60:	0093		INF	4 - .	READ 5		
1023 FAOF:	0094		FiN]	:0F			
1025 F9:	0095		FLD	R9			
102657	0096		STR	F7			
1027 FA03;	0097		ANI	3			
$10 \mathrm{CLF}^{\text {FCEE }}$	0095		fill	CST			

1028	AB:	0099	PLO	R8	-
$10{ }^{\text {c }}$ C	083	0100	LDH	F\%	-•
102 L	608	0101	18%		..
102 E	571	0102	STR	ET	.. SAVE CS
102 F	601	0103	1 EX		
1030	F800:	0104	LDI	0	
1032	571	0105	STR	R7	-
1033	F808:	0106	LDI	C2X	\cdots
1035	AT:	0107	PLD	R 7	-
1036	69\%	0108	INP	1	. . FERD Ee\%:
1037	faúa	0109	mill	307	.
1039	573	0110	STP	R2?	-
103 A	FE!	0111	SHL		
1038	FC16	0112	ADI	çT	-
103 D	A8;	0113	PLD	R8	-
103 E	485	0114	LDA	R8	. . save ge
103 F	603	0115	18×		-.
1040	571	0116	STR	R7	\cdots
1041	603	0117	1RX		-
1042	089	0118	LDN	R8	\cdots
1043	57\%	0119	STR	R 7	.
1044	608	0120	IRX		\cdots
1045	6A:	0121	INF	¿	READ 53 L
1046	FAOF:	012 E	GNI	\# 0 F	..
1048	571	0123	STR	R7	.
1049	893	01 ¢ 4	GLD	Re	\cdots
104 A	FA04:	0125	ANI	4	-
104 C	FE:	0126	SHL		.
104D	FE!	01 c ?	SHL		-
104 E	F1:	01 č8	QR		-
104 F	FE;	0129	SHL		
1050	FC36:	0130	HIII	CST	-
1052	A8!	0131	PLD	R8	\cdots
1053	481	0132	LIf	W8	. AVEES
1054	603	0133	IRX		. .
1055	575	0134	STR	R\%	-
1056	08:	0135	L! ${ }^{\text {N }}$	F8	-
1057	608	0136	IPX		
1058	57:	0137	STR	87	
1059	60;	0138	IRX		- RT= ADIL C4X
105 A	6E;	0139	INP	3	.. ${ }^{\text {e }}$
105 B	FAOF:	0140	ANI	\% ${ }^{\text {OF }}$	REALING CAX
1050	57	0141	-TR	k 7	-
105 E	898	0142	GLO	R9	.
105 F	FASG:	0143	Flld	8	\cdots
1061	FE;	0144	SHL		.
1062	F13	0145	de		\cdots
1063	FE;	0146	SHL		
10.4	FC6:	0147	fill	C4T	\cdots
1066	AB:	0148	FLD	FE	

$10-6451$	61＋	LUA	＂S	．．SMvE is
$10 \mathrm{~m}=018$	0150	12%		
119．45：	4151	－ 9	$\mathrm{B} / 7$	
100．4 yst	415\％	LDH．	ES	
10－t ent	015	1F\％		
1065	0134	E15	Pi	
$10 ¢ 5=80 \%$	615\％	LDI	L＊	
1096448	0156	FLO	54	
210\％E51\％	1115%	LH1	Alfa	
$1072{ }^{2} 5$	W1 E_{5}	clo	Fe．	．
10－2 E611：	015	LDI	EETA	．．
1119 me：	0160	ELO	Fos	．．
10 O ¢ 5 \％	9151	611	teme	．
107548	1182	FLD	5	
$10^{-2} \mathrm{~F}$ Fsons	015	LW	0	
1078 54：	0164	OHI	\％ 4	
10－6 E\％：	O1es	FHI	0	
	0150	FHI	5	
1095 ET：	918	PHI	07	
1 ORF E38	H03	FHI	Es	．
1080 EPO	018	HHI	0	
$10^{1} \mathrm{E}$	91－9	FHI	$5:$	－＊
	0171	FiLO	Fis	．．1＝0
1035 5\％：	O1FE	：Tr	F．5	
10 E 4 Sc	0173	TE	Fe	
10¢E Es：	0174	IE：	F\％	
105\％ers	015	DEC	Fer	
105－554	117e	：TF	FES	
$10 \% 550$	U175	Te	06	
1084150	0173	INT．	Fer	
10：4 1－1	0159	146	k	
10EE FSMG：	0180	LH］	CEAL	．
10E0 ME：	a131	＋60	Hes	．．
108E FEJご	M13e	LUI	H．1，FEETI）	
10゙11 EF：	0123	FHI	FFE	．
1041＝－ 0	0184	LHI	MFL＇	
1042 ${ }^{\text {at：}}$	0135	FLO	W－	
100＋ OL 10	0130	LII	H．1．MFL\％	．
1日ジ	0137	FHI	Fi：	－
10\％FS＋！	4158	LHI	MEHT	
	Q193	FLO		
10 ± 4813		LH	H． 1 ITENT．	
11H0 EE：	Q191	firl	FE ${ }^{\text {E }}$	\cdots
10 ar FES48	119	LH	GLF	．
10\％F A\＃：	019	FLD	$\stackrel{+}{4}$	
1040 Estas	11.194	LH1	0	
1 HE E ¢	0.195	TF	\cdots	
$104: 74$	1019	E0		．．fe：et eqeidt detect
10न4 E4：	91\％	E\％	6.4	．．く＊FAE HIJいLE．
109E UE：	119	：EF	FE	．¢mll ferincf．

	013	$16 \times$		
194\％E4t	9060	LDJFM	\％＇4	
1048 ［16．	Me91	EF	F\％	ifll eeftig．
1 lin －	OE0．	EF	HE	Gull Ment
19 man ［ic：	920：	EP	$5 \cdot$	
10ME：JE：	0e94	EF	\cdots	
1040 Din！	Was	EF	W	
1 OAL DE：	Heve	：EF	－	
104 E dr：	MEM	E	$8 \cdot$	
109F DE：	0＇0：	EP	－${ }^{\text {c }}$	
$10800^{2} 0^{2}$	0E0．	EF	Fi：	
108．${ }^{\text {DE }}$	0210	：Ef	¢E	
10EE Lu：	QE11	Ef	0	
1083 TE	HE12	EF	ef	
108458	0き13	L［1］	CHAE	．．CDMFUTE EETM
10 EC H9：	Qel 14	elo	${ }^{\circ} \mathrm{C}$	
10 ET 90：	9els	Lint	н்	
10E\％Fs：	acie	1		
10 EF 57	0e15	St	WT	
1084 ET：	023	LEG	Ei	
10EE 29	0219	IEC	F	
10 EV Est	Qce\％	UEC	FH	
1085468	$0 ¢ \mathrm{Cl}$	LIH	F	
19EE FEFF：	9こご	SF1	： FF	
1000 －4：	Qce？	MIIC：		－
16\％1 5\％	9Eこ4	：10	07	－
tiot 17：	192こ	IN1：	Fi	．
	0Eこと	6 11	64	
1 105	98	FLD	F\％	
106\％ 7 F	0ごる	L LiA	F\％	
100% 84：	0 Cc	E．H1	5 H	
1065 \％	9es	LINT	5	
10：Аヵ：	0	c．LO	Fir	
10：H Etil：	OEs	L［1］	TEMFE	
	903	F．LD	F	．
10.0 ［10：	1954	：EF	HC	．Gfal mflitemfer
	4ess	LINH	He	
106E 6 ：	OES	－ 10		
1000808	9\％	¢1F	HE	
1001 Ee：	Mes	DEC	50	
10 E Es	083	UE：	6	
10 LS 9e：	पe4：	Lill	F\％	
1014 －48	DE41	HIT：		
1 15¢ 6%	0－4	：if	56	．．EETA EETA＋
10 cos 10：	$0 \cdot 43$	IN：	Fe．	．．E－4ighifereta．
10140	ME゙4	LInt	6.4	
145 E E 4	9 Cb	LIE：	F4	
101% E4：	$0 \mathrm{O}+\mathrm{C}$	－14	Fi4	．．LFizb
$10 \mathrm{TH4} 14$.	00^{4}	114：	F． 4	．．Ftr Ahfic．
10LE：5sts：	Mes	LII	5 SF	

10 HE	Aes	0249		flo	R9	
10 DE	091	0250		LINT	09	
10 DF	3AES：	0251		EN2	LOOK	
10 E 1	934	0252		GLO	\％3	
10 E 2	FInc：	$00^{3} 3$		201	200	
10 E 4	35：04＇	0 0654		BN2	LDOPA	
10 ES	F801：	00^{255}		L01	1	I＝ 2000.00000
10 E 8	598	02Es		STP	Hos	．．GDF＝ 1
10 E	1	00^{5}	－			
10 E 9	1	0258	．			
10 ES	Fgeil	0259	Loak：	L［1	gamma	．．galchlate gamma
1 OEF	H8：	0260		PLD	Fe	．．
10 EC	FE15：	0261		LD1	cs	．
10 EE	A 91	9E6z		PLO	F 9	
10 EF	096	0263		LDHI	R9	
10 O	BAI	0264		$\mathrm{FH}]$	FA	
1 OF 1	F8008	$00^{0} 6$		LH］	0	
10 F 3	AA：	0266		FLD	FA	
1054	068	0267		LIN	Re	
10 FS	57：	0 068		Ste	$\mathrm{R} \cdot$	．
10 Fe	27：	0269		IEC	RT	\cdots
1057	26：	92－0		DEC	F6．	\cdots
10 F 8	468	0271		LIA	Fe	\cdots
10 F ？	57：	$0 \mathrm{OC72}$		STF	R 7	\cdots
1 OFA	171	0×73		INC	F ？	\cdots
10 FE	DC：	$0 \mathrm{0c7}$		SEF	FC	．．Gfll mplycisabeta，
1 OFC	058	0 O 75		LIN	H	．．Gali gammitalfa
10 FD	F5：	0276		51		\cdots
1 OFE	254	0ers		DEC	05	
10 FF	Cgi	0278		DEC	Res	．．
1100	458	0279		Lint	FS	
1101	FEFF：	0280		REI	：：FF	－
1103	748	0281		Hide		．
1104	FE：	0282		SHL		．．GET こIGM
1105	CR1047：	0283		LEMF	LIOFA	．ALFA＝GMMMA ：MD
1108	F935；	0e84		LII	M	．．＇iEs．HÃV FOSE．HIT
110 A	Fi9：	Oと8		fla	F9	
1198	F904：	0886		LII	－	\cdots
1101	Fe：	0287		flo	Fa	．
110 E	Fg00：	0288		LHI	0	\cdots
1110	HD：	0289		FLD	FII	
1111	ED：	$00^{9} 0$		FHI	EII	．
1112	81：	0291		PHI	F1	．
1113	E2：	029\％		FHI	Fic	．
1114	$59:$	$00^{0} 3$		ETF	F9\％	
1115	58：	0294		：1F	Fs	．．：$=$
1116	F900：	0.95		LHI	times	．．こhve hit time
1118	F1：	0296		PLD	F_{1}	
1110	F801：	0 0 5	Lil	H． 1 time	E．	
1118	H1；	0298	FHI			

111 C	931	0299		GHI	R3	.	
1110	513	0300		STR	R1	-	
111 E	11:	0301		IMC	R1	-	
$111 F$	$83 ;$	0302		GLI	R3	.	
1120	51;	0303		STR	R1	.	TIMES (0) $=1$
1121	11;	0304	INC	R1			
1122	04;	0305	LDM	R4			
1123	51:	0306	STR	R1			
1124	F825;	0307		LDI	DELTA	.	SAVE HIT SLDPE
1126	A8:	0308		PLD	R8	-	
1127	F82D;	0309		LDI	DELTAH	\cdots	
1129	R9;	0310		PLD	R9		
112	F0;	0311		LDX			
1128	59:	0312		STR	R9	\cdots	
112 C	28:	0313		DEC	R8	-	
1120	29;	0314		IEC	R9	-	
112 E	F0;	0315		LDK		-	
112 F	59;	0316		STR	R9	.	DELTAN= DELTA
1130	F831:	0317		LII	PP	.	SAVE PROV. PEAK
1132	A8;	0318		PLD	R8	-	
1133	04:	0319		LDN	R.4	.	SAVE PROY. PEFJ
1134	FE;	0320		SHL			
1135	333A:	0321		EDF	NEGB	-.	
1137	769	0322		SHRC		\cdots	
1138	30130;	03 S		be	FOSC	-	
113 A	76:	0324	NEGB:	SHRC:		.	
1138	FDO0;	0325		SII	0	.	
113 D	56;	0326	FISC:	STR	R8	\cdots	$\mathrm{PF}=\mathrm{ABS}$ (R)
113 E	E4;	0327	LDDFE:	SE\%	R. 4	\cdots	
113 F	DE;	0328		SEF	RR	\cdots	CALL REAII (R)
1140	DE;	0329		SEP	RE	-	Chll meft
1141	IIC:	0330		SEP	RC:		
1142	DE;	0331		SEF	RE		
1143	Inc:	0332		SEP	RC	.	
1144	DE;	0333		SEF	R.E	\cdots	
1145	ILC;	0354		SEP	FC	\cdots	
1146	TE:	0335		SEP	BE	\cdots	
1147	TC:	0336		SEP	RE	\cdots	
1148	IE;	0337		SEP	RE	-	
1149	DC:	0338		SEF	RC	-	
114 A	DE;	0339		SEF	RE	-	
114 E	$04:$	0340		LIN	R4	\cdots	
114 C	3261;	0341		EL	ZERDX:	-	0 CROSS 7 YES
114 E	FE;	0342		SHL			ND, GET ABS(R)
114 F	3354;	0343		FILF	MEEC		
1151	76	0344		SHRC			
1152	3057;	0345		ER	FOSI		
1154	76;	0346	NEGC:	SHEC		-	
1155	FDob;	0347		SII	0		
1157	A9:	0348	POSI:	FLD	89	-	

1158	F831;	0.349		LDI	PP	-	
115 A	H8:	0350		PLD	R8		
115B	893	0351			R9	.	
1150	F7:	0352		SM			
115 D	3330;	0353		BFZ	FOSC		HES (6) PFP 7 YES
115 F	303E;	0354		ER	LOCFE		ND, GET MEXT F
1161	;	0355	\cdots				
1161	;	0356	-				
1161	;	0357	.				
1161	:	0358	.				
1161	91:	0359	ZERDX:	EHI	RII	.	2EFD CROSSTMG
1162	3A7E;	0360		EMZ	2ERDA		SAVED ENDUGH ? YEs
1164	$93 ;$	0361		$\mathrm{BHI}^{\text {che }}$	83	-	NO
1165	11;	0362	INC	F1			
1166	$51 ;$	0363		STR	R1	-	
1167	11;	0.364		IHC	R1	-	
1168	$83 ;$	0365		GLD	F3	-	
1169	$51 ;$	0366		STR	R1	-	TIMES (M) = I
116 A	11;	0367		INT,	R1	-	
116 F	F831:	0368		LII	FP	-	
116 I	H8;	0369		FLD	Res	-	
116 E	0:5	0370		LIN4	K8	.	
116 F	51:	0371	STR	R1			
1170	F835;	0372		LIII	11	-	
1172	A9;	0373		FLD	F9	-	
1173	99;	0374		LDH	F9	-	
1174	FC01:	0375		ALI	1	-	
1176	59	0376		STR	RE	.	$M=M+1$
1177	FIVF;	0377		SUI	127	-	
1179	3APE:	0378	EH2	EERAA			
1178	FS01:	0379		LII	1		
117 I	EIT:	0380		FHI	RI		
117 E	31AE;	0881	ZERQA:	E0	EHICK		
1180	1 I	0382		INS	RII		
1181	8D:	0383		ELD	RD	\cdots	
1182	FDCs:	0334		SII	E00	\bullet	
1184	3RE:	0365		EM	LIDFE		200 SEC FASSEI 7 Na
1186	F835:	0386		LII	1		YES
1188	H9;	0188		FLD	R9	-	
1189	09:	0368		LINH	RG		
118 H	FDes;	0389		SII	40		
1180	FE;	0390	SHL				
118 I	C31047:	0991	LEIIF	LIDEA			
1190	78;	0392		SEQ			YIS, SET FLAG
1191	F847;	0303		LII	HITS		ShVE HIT TIME
1193	HE;	0894		FLD	Fe		
1194	69:	0995		LINH	R9	-	
1195	FE:	0396		SHL			
1196	FCOO:	0397		AIII	HTIMES	-	
1198	he:	0398	FLI	Re			

1199	F804；	0399	LII	A． 1 （HTI	MES	
1198	BC：	0400	PHI	Re		
119	F800：	0401		LDI	TIMES	－•
119 E	A9：	0402		PLD	$R 9$	
$119 F$	49：	0400		LIA	F 5	－
11 A0	52；	0404	STR	R2		
11 Al	12：	0405	IME：	R2		
11 AP	09：	0406		LDN	R9	
11 A3	5ᄅ：	0407	STR	Re		
1194	F847：	0408		LDI	HITS	
1176	A9：	0409		PLD	R9	
1147	09；	0410		LDN	R 9	
1178	FC01：	0411		AIII	1	
11 AR	59：	0412		STR．	R9	．HITS $=$ HITS＋1
11 HB	F841：	0413	EMDCK：	LDI	COHT	．ELMFUTE M＊＊E
11 AD	A8：	0414		FLD	R8	
11 AE	F835：	0415		LII	M	＊
1180	A9：	0416		PLD	R9	
1181	095	0417		LINH	$R 9$	－•
1182	BH：	0418		PHI	RA	
1153	575	1：419		STR	R 7	－
$11 \mathrm{B4}$	$27 ;$	0420		DEC	R7	
1185	F800：	0421		LIII	0	－－
11 B ？	AF：	0422		PLD	R H	
1188	57	0423		：TR	RT	\cdots
1189	17\％	0424		1HC	R 7	
11 BA	DC：	0425		SEP	Ft	－－
11 EE	FSE1：	04 E6		LII	GEMPMA	
11 ED	A9：	04こ7		FLD	R 9	－
11 BE	09：	0428		LDN	F9	
11 BF	F4：	0429		H10		－
1100	73；	0430		STXI		
1161	29：	0431		DEC	R9	－－
11 CE	74；	04330		ALIS：		
1103	58；	0433		STR	R8	．CDFMT $=$ GHMMA + M +2
11.4	60；	0434		IRX		
115	F804：	0435		LII	S	－•
1107	A9：	0436		PLD	$R 9$	＊
1108	05：	0437		LIN	RS	
116	F5；	14：38		5		－•
11 CA	25：	0435		IEE	F5	
11 EE	ご；	0440		IEE：	Re	－•
110 C	$45 ;$	0441		LIA	R 5	
11ED	FBFF：	0442		XRI	\％FF	－•
11：F	74：	0443		HIIT：		
1150	FE：	0444		SHL		－
1111	3F\％：	0445		EIIF	SSET	
1113	09：	0446		LIIH	P9	－•
1114	FCO1：	0447		HII	1	
1115	59：	0443		STP	Fig	．$S=S+1$

1107	F835；	0445		LII	M	
1110	FE：	0450		FLO	FR	－
11 IIH	08；	0451		LIM	R8	
1111 B	F6：	0452		SHR		
11 DC	F6：	0453		SHR		
1110	FCO4；	0454		HIII	4	
110 F	E9：	0.455		SEX	69	
11 EO	F5：	0456		SII		－•
11E1	E8：	0457		SEX	Rs	
11 EP	FE；	0458		SHL		－•
11E3	C3113E：	0459		LEDF	LODF＇B	
11 E	F845；	0460		LII	GロF	
11 ES	H7：	0461		FLO	RG	
11 EF	F800；	046		LII	0	
11EF	59：	0463		STR	89	
11 EC	7A：	0464	RES			
11ED	C01 0n7：	0465		LEF：	LODF＇H	－RE－ENTEF SEHFLH
$11 F 0$	F800；	0460	SET：	LII	0	－－
$11 F 2$	59；	0467		STR	FS	
1173	C0113E：	0463		LER	LODFE	－－
$11 F 6$	；	0469	\cdots			
$11 F 6$	；	0470	－			
11 FG	；	0471				
$11 F 6$	；	0472		QRE	：120゙0	－
12019	0101；	0473	E1T：	IU：	\％0101	．． 5
120 e	0503：	0474		IIL	$\therefore 0503$	．． 6
1204	0E04：	0475		IIC：	： 1504	．．${ }^{\text {r }}$
$1 E 06$	0n94：	0476		［10．	：01104	－・シ
1208	$1105 ;$	0477		110	$: 1105$	．． 9
120 H	10100：	0478		112．	$: 0100$	． 1.0
1200	4706	0479		III：	$0: 4706$	． 1.1
12 OE	1304	0480		IIT．	： 1304	．1．E＇
1210	$1504 ;$	0481		［10：	：1504	． 1.3
1こ1こ	ごい5：	0482		DC：	¢ご心5	．． 1.4
1こ14	0301：	0483		［110：	\％0301	．． 1.5
1こ16	：	0484				
1き16．	；	10485	－			
1 116	；	0456				
1216	01009	0487	E®T：	IIC：	80000	． 0.0
1218	0905：	1485		IIC：	$\because 0906$	． 9.15
1き1ヵ	0905：	1489		III．	＊0905	． 0.30
$1 玉 1 c$	07040	1490		ITC：	90704	． 0.45
1 E1E	9503：	0491		［19，	＊050\％	． 0.60
$1 こ こ 0$	030e：	0.492		IIC	＊030E	． 0.75
12ここ	1 LOS	0493		LII：	\％ 1105	－ 0.90
1 ここ4	01009	0494		IU：	＊1100	． 1.00
1ご¢	$1104:$	0495		IIC：	＊1104	－1．05
1ごこ	1304：	0496		IIS：	\％1304	． 1.30
1EEH	！EGS：	0497		［1I：	＊0E03	． 1.35
1ここし	0501；	0498		［II：	－0501	－ 1.50

1304 8A	0099	RHIFT:	GLO	RA	
1305 3221:	0100		B2	EXITA	\cdots
1307 2A!	0101		DEC	RA	
130828	0102		DEC.	ks	
1309285	0103	DEC	R8		
130 FO	0104		LDK		\ldots
$1308 \mathrm{F6}$	0105		SHE		
1300 A9	0106		PLO	R9	
130 F FA40:	0107		ANI	\% 80	.. GET PREY. SIGM
130 F 3 l 51	0108		B2	RHI	.. SIGN "+a \% YESI
1311898	0109		GL0	R9	.. NO, it's -
1312 F9808	0110		QR1	\%80	. REESTDRE "-"
1314 ค9	0111		FLO	89	
1315998	0112	RH1:	GLO	R9	.. GET IT
131658	0113		StR	R8	.. Sive high ordee mits
131760%	0114		IRX		
1318 FO	0115		LDK		
1319 76;	0116		SHRC		.
131A 583	0117		STR	Rs	
1318608	0118	1RX			
1310 F0;	0119	LIX			
131076	0120	SHRC			
131 E 58	0121	STR	F 8		
131F 3014:	012 z		ER	Rhift	
1321 DF:	0123	EXITA:	SEP	RF	.. RETURN
1322 coleco;	01 24		LER	MFLY	
1325 ;	0125	\cdots			
1325 ;	0126	.			
1325 ;	0127	\cdots			
1325 :	0128	.	SURROUT	Itine meft	
1325 :	0129	.	CAL	LINIG SEQ. :	\cdots
1325 ;	0130	.		EX R4 ..	R4 $=$ ADIL (P)
1325 :	0131	.			RTE A. DCTEMF)
1325 :	0132	.	SEP	RE	
1325 :	0133	.			
1325 :	0134	-.			
1325 ;	0135	.			
1325 ;	0136	LR=:06	-		
1325 ;	0137	C1=409			
13 E 5 :	0138	CE=000			
1325 :	0139	C3E:50F			
1325 ;	0140	DELTA=tz			
1325 ;	0141	CHAR=:̇z			
13 E5;	$014{ }^{\text {a }}$	TEMPZ=:	35		
1325 :	0143	.			
13c\% ;	0144	. .			
1325 :	0145				
1325 ;	0146	drg	:1340		
1340 FO	0147	MEAT:	LIX		
134157	0148		STE	87	. $\mathrm{R}_{\text {F }}=\mathrm{F}$
1342 27;	0149		IEC	P. 7	
1343 FE	0150		SHL		.. GET 3IGN
1344 3ミ4A;	0151		BLIF	hegra	\cdots HEG \because Y YES
1346 F8010:	0152		LDI	0	.. HD, EXt zefoes
1349 304C;	0153		ER	MEATA	
134A F3FF;	0154	MEgAF:	LII	:FFF	.. Ext dies
1346 57;	015	MEATA:	STE	F7	. - Snve It
1345 ;	0156	.			. TEMF $=$ F , de EITS
13415 : 7	0157		1 HC	R7	
134 EFPD	0158		LII	A. OCTEMFO)	. .
1350 fe	0150		FLD	Fa	
$1351 \mathrm{Fg} 99 \%$	0160		LDI	C.	.
1353 1354%	0161		FLD	F9	
1354 4\%	0162		LDA	59	-

1380	A9：	4199		PLD	R9	
1381	498	0200		LIM	R9	
1382	EA：	0201		PHI	RA	．．RA．$=$ LSE＂Ce＂
1383	091	OE0E		L．DM	R9	
1384	HA！	0203		PLD	R．A	
1385	E8	0204		SEX	R．8	
1386	DF ${ }^{\text {a }}$	0205		SEP	R．F．	．CALL MPLY（delta）
1387	041	¢ER06		LDH	R 4	．$A=R(7-0.1)$
1385	FE	Qeop		SHL		．．GET SIGH
1389	336E	0208		BDF	NEGH	
1388	76	0209		SHRC		
1385	3091：	0210		ER	OSA	
138 E	76	0211	NEGA：	SHRC		
138 F	FD00：	0212		SDI	0	
1391	BA3	$0 ¢ 13$	PDSA：	PHI	RA	．．RA． $1=$ ARS（R）
1392	573	0214		STR	R 7	．．TEMP． $0=$ HES（E）
1393	F829\％	0215		LII	CHAR	
1395	A8：	0216		PLO	Re	－
1396	F800：	0217		LDI	0	
1398	AR：	0218		FLD	RA	\cdots
1399	E7	0219		DEC	R． 7	
1394	57：	0こで0		STR	R？	\cdots
1392	17：	$0<{ }^{\text {a }} 1$		INC	R7	．．ReTe aid．DF Multiplichan
1395	IF：	02 az		SEP	RFF	．．EALL MFLY（Char＝Ref，
1390	F824；	0223		LDI	A．00	．
139 F	A9：	0224		PLD	F9	．．
13 RO	$49:$	0225		LDA	R9	
13 Al	FE；	0226		SHL		\cdots
13 AL	$09:$	0227		LINH	F9	
13 A3	3EAT；	$0 \mathrm{0cz}$		BHF	PDEE	\cdots
13 A5	FDOO：	0229		SHI	0	
13 A 7	EA；	0230	PDSE：	PHI	F：A	
13 R 8	57；	0231		STR．	ET	
1349	27：	0232		DEC	F\％	．．TEMF＝fES（IELTA）
13 AR	F800；	0.33		LII	0	
13 AC	57：	0.34		STR	R7	．
$13 A D$	17；	0235		INC：	F． 7	
13 AE	AP；	0.36		FLO	RH	．
134 F	F831：	0237		LII	IEMFi̇	
1381	He：	0838		FLL	Fs	
13 EC	DF：	0239		SEF	RF	．．LALL MFLYCTEMFĖ＇，
1383	，	0240				．．＝IELTH＊＊く̇
1363	FsEs：	0241		LIII	CHAF	
1385	H9：	0242		FLD	5%	
1386	10：	0243		LIIN	F9	
1387	F4：	0244		Alin		
13 ES	59：	0845		STR	F9	
1389	29：	Qé4e		IEC	F9，	
13 EF	cis：	$0 \cdot 45$		LEC	R8	

1388	093	0248	LUN	$R 9$	
13 BC	741	0249	ADC		
138 D	598	0250	STE	09	
138 E	F8291	0251	LDI	CHAF	
1360	A8:	0252	PLD	R8	
1361	051	0253	Lin	RS	
1362	F53	0254	50		. AmCHAF-HLFA, LD DREDER
1363	573	0255	STR	R27	
1364	278	0256	DEC	AT	\cdots
136	253	0257	DEC	RS	
1306	283	0258	DEC	R8	
1367	453	0 0259	LUA	RS	-
13 CB	FBFF:	0269	XRI	*FF	
13 CA	743	0 0 6:	ADC		.. high deder eits
13 CB	573	0262	STR	E.7	
1300	171	0263	INC	RT	.
13 CD	F80F:	0264	LDI	C3	
13 CF	A98	0265	PLD	R9	-
1300	491	0266	LDA	R9	
1301	EA!	0267	PHI	RA	-
13 DE	098	0 0268	LIN	E9	
1345	Aft	0269	FLD	PA	-•
1304	FE35:	0270	LII	TEMFE	
1306	A8:	0271	PLD	Fi8	
1307	DF:	0272	SEP	RF	.. Cali. MFly
13 DE	05;	0273	LUN	R5	
1319	F43	0274	ADI		-
13 DA	55%	0275	STE	R5	
13 LE	25:	0276	IEC	R5	-•
130 C	283	0277	IEC	R8	
1315	05:	0278	LIN	R5	-
13 DE	74:	0279	ADC		
13 LIF	55\%	0280	Ste	FE	\cdots
13 E 0	$15 ;$	0281	14 C	FS	
13 E 1	If:	0 08E	SEP	RF	.. RETURTH
13 Ez	30408	0283	EF	MEAT	
1 SE4	;	0284	END		
0000					

ORIGINAL PAGE IS
OF: POOR QUALITY

High Pass Filter (C1)

Range: $\quad 0.5$ to 1.5
Resolution: 0.1
Mean: 0.995
Steps: 11

Index	Value	Real Value	Index	Value	Real Value
0	0.5	0.5000	6	1.1	1.1093
1	0.6	0.6250	7	1.2	1.1875
2	0.7	0.6875	8	1.3	1.3125
3	0.8	0.8125	9	1.4	1.4062
4	0.9	0.9060	10	1.5	1.5000
5	1.0	1.000	11-15		

Weighting Constant (C2)

Range: $\quad 0.0$ to 2.0
Resolution: 0.15

Mean: 0.65

Steps: 14

Index	Value	Real Value	Index	Value	Real Value
0	0.00	0.0000	8	1.05	1.0625
1	0.15	0.1406	9	1.20	1.1875
2	0.30	0.2812	10	1.35	1.3750
3	0.45	0.4375	11	1.50	1.5000
4	0.60	0.6250	12	1.65	1.6250
5	0.75	0.7500	13	1.80	1.8125
6	0.90	0.9060	14	1.95	1.9375
7*	1.00	1.0000	15*	2.00	2.0000

*Not required in original specification

(C3)

Range: $\quad 0.2$ to 0.8
Resolution: 0.1
Mean: 0.5
Steps: $\quad 7$

Index	Value	Real Value	Index	Value	Real Value
0	0.200	0.2030	13*	0.525	0.5234
1*	0.225	0.2187	14*	0.550	0.5468
2*	0.250	0.2500	15*	0.5750	0.5781
3*	0.275	0.2730	16	0.6000	0.6093
4	0.300	0.2960	17*	0.6250	0.6250
5*	0.325	0.3280	18*	0.6500	0.6562
6*	0.350	0.3437	19*	0.6750	0.6718
7*	0.375	0.3750	20	0.7000	0.7031
8	0.400	0.4062	21*	0.7250	0.7187
9*	0.425	0.4218	22*	0.7500	0.7500
10*	0.450	0.4531	23*	J. 7750	0.7656
11*	0.475	0.4687	24	0.8125	0.8125
12	0.500	0.5000	25-31		ED"

(C4)

Range:	0.005 to 0.05				
Resolution:	0.005				
Mean:	0.025				
Steps:	10				
Index	Value	Real Value	Index	Value	Real Value
0	0.0050	0.0048	10	0.0300	0.0312
1*	0.0075	0.0078	11*	0.0325	0.0332
2	0.0100	0.0097	12	0.0350	0.0351
3*	0.0125	0.0126	13*	0.0375	0.0371
4	0.0150	0.0156	14	0.0400	0.0390
5*	0.0175	0.0175	15*	0.0425	0.0429
6	0.0200	0.0195	16	0.0450	0.0449
7*	0.0225	0.0234	17*	0.0475	0.0468
8	0.0250	0.0253	18	0.0500	0.0507
9*	0.0275	0.0273	19-31		SED"

Threshold Constant (C5)
Range: $\quad 4.0$ to 6.0
Resolution: 1.0
Mean: $\quad 5.0$
Steps: 3

Index	Value	
		Real Value
0	4.0	
1	5.0	4.0
2	6.0	5.0
3	7.0	6.0
		7.0

	Expected Time Consumption (Search Mode)		
	$\|R\|=127$		1250 inst. $=10 \mathrm{~ms}$)
Program Seq. or Function	At Average Values	Worst Case	At Best Values
Germ Main	130	130	130
Sub Read	20	20	20
Sub Meat	125	125	125
Sub Mply (Cl)	30	320	
Sub Mply (C2)	30	245	
Sub Mply ($\mathbf{R}^{\mathbf{2}}$)	200	200	200
Sub Mply ($\Delta \mathrm{R}^{\mathbf{2}}$)	230	230	230
Sub Mply (C3)	50	340	
Sub Mply (C4)	300	320	
Sub Mply (C5)	90	90	90
Totals	1205	2050	

	Expected Time Consumption (Validation Mode)		(1250 inst. $=10 \mathrm{~ms}$)
	$\|\mathrm{R}\|=127$		
Program Seq. or Function	At Average Values	Worst Case	At Best Values
Germ Main	100	100	100
Sub Read	20	20	20
Sub Meat	125	125	125
Sub Mply (C1)	30	320	
Sub Mply (C2)	30	245	
Sub Mply ($\mathbf{R}^{\mathbf{2}}$)	200	200	200
Sub Mply ($\Delta \mathrm{R}^{\mathbf{2}}$)	230	230	230
Sub Mply (C3)	50	340	
Totals	815	1660	

	畋vi\&ONS				
	3*M	20 me	Oricmipliom	onte	apmaval
-					

BCARD 1

neytions			
80	2activim	日ave	aremeval

atre:10A 13.39
buldolt frame

FOLDOUT FRAMR

ORICIM: PAGE ER
O. $\because \therefore \therefore$ QUALITY

FULUOUT FRAME

CASEE

FI

ORIGINAL PAGE IS
OH POOR QUALJTY

FOLDOU' FRAME

CONTAOL EOARA
ORAP /

$$
\begin{aligned}
& \text { ORIGINAL PAGE IS } \\
& \text { OF POOR QUALITY }
\end{aligned}
$$

FOLDCUT FRAME

\square

$\begin{array}{llll}86 & 87 & 56 & 85 \\ 0 & \bigcirc & \bigcirc & \bigcirc\end{array}$
mse wEIORT
$\begin{array}{lllll}814 & 517 & \mathbf{5 1 6} & 515 & 810\end{array}$
$\bigcirc \bigcirc \bigcirc 0$ lowg ave

fo:NOUT FRAME

Ortorer
Us: sữ wuastaity

$$
\begin{aligned}
& \text { ORTGNal padat in } \\
& \text { OF pnnn nitalit }
\end{aligned}
$$

FOLDOUT FRAME

[^0]: ${ }^{1}$ Geophysics Branch, NASA Goddard Space Flight CenteI, Greenbelt, Maryland 20771
 ${ }^{2}$ Spacecraft Data Management Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771
 ${ }^{3}$ Ground Systems and Data Management Branch, NASA Goddard Space Flight Center, Greenbelt, Mary Land 20771
 ${ }^{4}$ Computer Sciences-Technicolor Associates, Seabrook, Maryland 20801

[^1]: *Novas, R. G., 1977, An Application of Microprocessor Technology to Remote Station Analysis of Seismic Signals, unpublished Master of Science Thesis, Lehigh University, Bethlehem, Pennsylvania.

[^2]: *There are 11 engineering blueprints referred to as sheets. (See back cover.)

