

OPERATING INSTRUCTIONS

Microstepping M	IForce PowerDrive Pr	oduct Manual Changelog
Date	Revision	Changes
04/05/2007	R040507	Initial Release
03/20/2008	R032008	Added CW/CCW to the list of clock option labels for the differential input version. Functionality is the same as the up/down clock type. Added qualification os personnel and intended use statements to inside front. Added PWM Motor Settings to Section 2.6.

The information in this book has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies.

Intelligent Motion Systems, Inc., reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Intelligent Motion Systems, Inc., does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights of others. Intelligent Motion Systems and intelligent are trademarks of Intelligent Motion Systems, Inc.

Intelligent Motion Systems, Inc.'s general policy does not recommend the use of its products in life support or aircraft applications wherein a failure or malfunction of the product may directly threaten life or injury. Per Intelligent Motion Systems, Inc.'s terms and conditions of sales, the user of Intelligent Motion Systems, Inc., products in life support or aircraft applications assumes all risks of such use and indemnifies Intelligent Motion Systems, Inc., against all damages.

Microstepping MForce PowerDrive Product Manual Revision R032008 Copyright © Intelligent Motion Systems, Inc. All Rights Reserved

Important information

The drive systems described here are products for general use that conform to the state of the art in technology and are designed to prevent any dangers. However, drives and drive controllers that are not specifically designed for safety functions are not approved for applications where the functioning of the drive could endanger persons. The possibility of unexpected or un-braked movements can never be totally excluded without additional safety equipment. For this reason personnel must never be in the danger zone of the drives unless additional suitable safety equipment prevents any personal danger. This applies to operation of the machine during production and also to all service and maintenance work on drives and the machine. The machine design must ensure personal safety. Suitable measures for prevention of property damage are also required.

Qualification of personnel

Only technicians who are familiar with and understand the contents of this manual and the other relevant documentation are authorized to work on and with this drive system. The technicians must be able to detect potential dangers that may be caused by setting parameters, changing parameter values and generally by the operation of mechanical, electrical and electronic equipment.

The technicians must have sufficient technical training, knowledge and experience to recognise and avoid dangers.

The technicians must be familiar with the relevant standards, regulations and safety regulations that must be observed when working on the drive system.

Intended Use

The drive systems described here are products for general use that conform to the state of the art in technology and are designed to prevent any dangers. However, drives and drive controllers that are not specifically designed for safety functions are not approved for applications where the functioning of the drive could endanger persons. The possibility of unexpected or unbraked movements can never be totally excluded without additional safety equipment.

For this reason personnel must never be in the danger zone of the drives unless additional suitable safety equipment prevents any personal danger. This applies to operation of the machine during production and also to all service and maintenance work on drives and the machine. The machine design must ensure personal safety. Suitable measures for prevention of property damage are also required.

In all cases the applicable safety regulations and the specified operating conditions, such as environmental conditions and specified technical data, must be observed.

The drive system must not be commissioned and operated until completion of installation in accordance with the EMC regulations and the specifications in this manual. To prevent personal injury and damage to property damaged drive systems must not be installed or operated.

Changes and modifications of the drive systems are not permitted and if made all no warranty and liability will be accepted.

The drive system must be operated only with the specified wiring and approved accessories. In general, use only original accessories and spare parts.

The drive systems must not be operated in an environment subject to explosion hazard (ex area).

This page intentionally left blank

Getting Started: Microstepping MForce PowerDrive1-1
Before You Begin1-1
Tools and Equipment Required1-1
Connecting the Power Supply 1-1
Connect Opto Reference and Logic Inputs1-2
Connecting the Motor

Part 1: Hardware Reference

Section 1.1: Introduction to the Microstepping MForce PowerDrive	1-5
Configuring	
Features and Benefits	
Section 1.2: Microstepping MForce PowerDrive Detailed Specifications	1-7
General Specifications	
Setup Parameters	
Mechanical Specifications	
Pin Assignment and Description	
P1 12-Pin Locking Wire Crimp Connector - Power, I/O and SPI Commu	nications 1-9
P3 Connector - DC Power, 2-Pin Locking Wire Crimp	
P4 Connector - Motor	

Part 2: Connecting and Interfacing

ction 2.1: Mounting and Connection Guidelines	3
Mounting Recommendations	
Securing Power Leads and Logic Leads	
Layout and Interface Guidelines	
Rules of Wiring	
Rules of Shielding	
Recommended Wiring	
Recommended Mating Connectors and Pins	
ction 2.2: Interfacing DC Power	7
Choosing a Power Supply for Your MForce PowerDrive	7
DC Power Supply Recommendations	8
Recommended IMS Power Supplies	8
Basic DC Power Connection	9
Recommended Power and Cable Configurations	9
Example A: DC Power Cabling Under 50 Feet	
Example B: AC Power to Full Wave Bridge Cabling Over 50 Feet	
Example C – Cabling 50 Feet or Greater, AC Power to Power Supply	
ction 2.3: Motor Selection and Interface	11
Selecting a Motor	11
Types and Construction of Stepping Motors	
Sizing a Motor for Your System	
Recommended IMS Motors	
IMS Inside Out Stepper Motors	13
Connecting the Motor	14
8 Lead Motors	
6 Lead Motors	15
4 Lead Motors	16
Recommended Motor Cabling	16
Example A: Motor Cabling Less Than 50 Feet	
Example B: Motor Cabling Greater Than 50 Feet	
Recommended Motor Cable AWG Sizes	
ction 2.4: Logic Interface and Connection	19
Optically Isolated Logic Inputs	
Isolated Logic Input Pins and Connections	
Isolated Logic Input Characteristics	
Isolated Logic Input Characteristics	19

Enable Input	19
Clock Inputs	
Optocoupler Reference	
Input Connection Examples	
Open Collector Interface Example	
Switch Interface Example	
Minimum Required Connections	
Minimum Required Connections	2)
Section 2.5: Connecting SPI Communications	
Connecting the SPI Interface	
SPI Signal Overview	
SPI Pins and Connections	
Logic Level Shifting and Conditioning Circuit	
SPI Master with Multiple Microstepping MForce PowerDrive	
Section 2.6: Using the IMS SPI Motor Interface	
Installation	
Configuration Parameters and Ranges	
Color Coded Parameter Values	
IMS SPI Motor Interface Menu Options	
Screen 1: The Motion Settings Configuration Screen	
MSEL (Microstep Resolution Selection)	
HCDT (Hold Current Delay Time)	
MRC (Motor Run Current)	
MHC (Motor Hold Current)	
DIR (Motor Direction)	
User ID	
IMS SPI Motor Interface Button Functions	
Screen 2: I/O Settings Configuration Screen	
Input Clock Type	
Input Clock Filter	
Enable Active High/Low	
Warning Temperature	
IMS Part Number/Serial Number Screen	35
Fault Indication	35
Upgrading the Firmware in the Microstepping MForce PowerDrive	
The IMS SPI Upgrader Screen	
Upgrade Instructions	
Initialization Screen	
Port Menu	
Motor Settings Screen (PWM Current Control)	
PWM Mask	
Maximum PWM Duty Cycle (%) Parameter	
PWM Frequency Range Parameter	
PWM Control Bits	
Example PWM Settings By Motor Specifications	
	1.
Section 2.7: Using User-Defined SPI	
SPI Timing Notes	
Check Sum Calculation for SPI	
SPI Commands and Parameters	
SPI Communications Sequence	43
Appendices	

Appendix A: Optional Prototype Development Cables	A-3
MD-CC300-000: USB to SPI Parameter Setup Cable	A-3
Adapter Cables	
Installation Procedure for the MD-CC300-000	A-4
Installing the Cable/VCP Drivers	A-4
Determining the Virtual COM Port (VCP)	A-6
PD12-1434-FL3 — Power, I/O and SPI	A-7
Prototype Development Cable PD02-2300-FL3	A-8
Prototype Development Cable PD04-MF34-FL3	A-8

Figure GS.1: Minimum Logic and Power	Connections 1	-1	
--------------------------------------	---------------	----	--

Part 1: Hardware Reference

Figure 1.1.1: Microstepping MForce PowerDrive	1-5
Figure 1.2.1: MForce PowerDrive Mechanical Specifications	1-8
Figure 1.2.2: P1 — 12-Pin Locking Wire Crimp Pin Configuration	
e i e	
Figure 1.2.3: P3 — 2-Pin Locking Wire Crimp Pin Configuration	-10

Part 2: Connecting and Interfacing

Figure 2.1.1: Base Mounting the MForce PowerDrive	3
Figure 2.1.2: End Mounting the MForce PowerDrive	
Figure 2.2.1: IMS ISP300 Switch Mode Power Supply	
Figure 2.2.2: MForce PowerDrive DC Power Connection	9
Figure 2.2.3: DC Cabling - Under 50 Feet	9
Figure 2.2.4: AC To Full Wave Bridge Rectifier, Cabling over 50 Feet	10
Figure 2.2.5: AC Cabling - 50 Feet or Greater - AC To Power Supply	10
Figure 2.3.1 A & B: Per Phase Winding Inductance	12
Figure 2.3.2: 8 Lead Motor Series Connections	14
Figure 2.3.3: 8 Lead Motor Parallel Connections	14
Figure 2.3.4: 6 Lead Half Coil (Higher Speed) Motor Connections	15
Figure 2.3.5: 6 Lead Half Coil (Higher Speed) Motor Connections	
Figure 2.3.6: 4 Lead Motor Connections	
Figure 2.3.7: Motor Cabling Less than 50 Feet	16
Figure 2.3.8: Motor Cableing Greater than 50 Feet	17
Figure 2.4.1: Isolated Logic Pins and Connections	19
Figure 2.4.2: Input Clock Functions	
Figure 2.4.3: Clock Input Timing Characteristics	
Figure 2.4.4: Optocoupler Input Circuit Diagram	
Figure 2.4.5: Open Collector Interface Example	
Figure 2.4.6: Switch Interface Example	
Figure 2.4.7: Minimum Required Connections	
Figure 2.5.1: MD-CC300-000 Parameter Setup Cable	26
Figure 2.5.2: SPI Pins and Connections, 12-Pin Wire Crimp	
Figure 2.5.3: Logic Level Shifting and Conditioning Circuit	
Figure 2.5.4: SPI Master with a Single Microstepping MForce PowerDrive	
Figure 2.5.5: SPI Master with Multiple Microstepping MForce PowerDrives	
Figure 2.6.1: SPI Motor Interface Color Coding	
Figure 2.6.2: SPI Motor Interface File Menu	30
Figure 2.6.3: SPI Motor Interface View Menu	30
Figure 2.6.4: SPI Motor Interface Recall Menu	
Figure 2.6.5: SPI Motor Interface Upgrade Menu	31
Figure 2.6.6: SPI Motor Interface Help Menu and About Screen	31
Figure 2.6.7: SPI Motor Interface Motion Settings Screen	32
Figure 2.6.8: SPI Motor Interface I/O Settings Screen	34
Figure 2.6.9: SPI Motor Interface Part and Serial Number Screen	
Figure 2.6.10: SPI Motor Interface Upgrade Utility	
Figure 2.6.11: SPI Motor Interface Initialization	37
Figure 2.6.12: SPI Motor Interface Port Menu	
Figure 2.7.1: SPI Timing	
Figure 2.7.2: Read/Write Byte Order for Parameter Settings (Default Parameters Shown)	
Figure 2.6.13: Motor Settings Screen	
Figure 2.6.14: PWM Mask Bits	
Figure 2.6.15: PWM Frequency Range	
Figure 2.6.16: PWM Control Bits	
Figure 2.7.1: SPI Timing	41
Figure 2.7.2: Read/Write Byte Order for Parameter Settings (Default Parameters Shown)	43

Appendices

Figure A.1: MD-CC300-000	3
Figure A.2: MD-CC300-000 Mechanical SpecificationsA-3	
Figure A.3: Typical Setup, Adapter and Prototype Development CableA-4	4
Figure A.4: Hardware Update WizardA-4	4
Figure A.5: Hardware Update Wizard Screen 2A-5	5
Figure A.6: Hardware Update Wizard Screen 3A-5	5
Figure A.7: Windows Logo Compatibility TestingA-5	5
Figure A.8: Hardware Update Wizard Finish InstallationA-6	6
Figure A.9: Hardware PropertiesA-6	6
Figure A.10: Windows Device ManagerA-6	6
Figure A.11 PD12-1434-FL3	7
Figure A.12: PD02-3400-FL3	8
Figure A.13: PD04-MF34-FL3	8

List of Tables

Part 1: Hardware Reference

Table 1.2.1: Electrical Specifications	1-7
Table 1.2.2: Thermal Specifications	1-7
Table 1.2.3: I/O Specifications	
Table 1.2.4: Communications Specifications	
Table 1.2.5: Motion Specifications	
Table 1.2.6: Setup Parameters	
Table 1.2.7: P1 Connector – Power, I/O and SPI Communications	1-9
Table 1.2.8: P3 Connector	-10
Table 1.2.9: P4 Connecter	-10

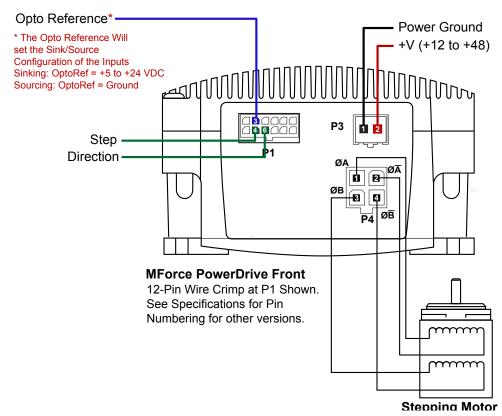
Part 1: Interfacing and Configuring

Table 2.2.1: Recommended Wire Gauges	10
Table 2.3.1: Recommended Wire Gauges	17
Table 2.4.1: Input Clocks Timing Table	
Table 2.4.2: Optocoupler Reference Connection	
Table 2.6.1: Setup Parameters and Ranges	
Table 2.6.2: Microstep Resolution Settings	
Table 2.6.3: Hold and Run Current Percentage Equivalents	
Table 2.6.4: Input Clock Filter Settings	
Table 2.6.5: Microstepping MForce PowerDrive Fault Codes	
Table 2.6.6: PWM Mask Settings	
Table 2.6.7: Typical PWM Mask Settings	
Table 2.6.8: Maximum and Initial PWM Frequency	
Table 2.6.9: Example PWM Settings	
Table 2.7.1: SPI Commands and Parameters	

Appendices

Table A.1: PD12-1434-FL3 Wire Color Codes	A-	7
Table A.2: PD04-MF34-FL3	A-	8

STA (C


Microstepping MForce PowerDrive

Before You Begin

The Getting Started Section is designed to help quickly connect and begin using your Microstepping MForce PowerDrive. The following examples will help you get a motor turning for the first time and introduce you to the basic settings of the drive.

Tools and Equipment Required

- Microstepping MForce PowerDrive Unit (MFM)
- A NEMA 23 or 34 Size Stepping Motor
- Control Device for Step/Direction
- +5 to +24 VDC Optocoupler Supply (if using sinking output type)
- An Unregulated +12 to +48VDC Power Supply
- Basic Tools: Wire Cutters / Strippers / Screwdriver
- Wire for Power Supply (18 AWG) and Motor (16 AWG)
- 22 AWG Wire for Logic Connections

Connecting the Power Supply

Using the recommended wire, connect the DC output of the power supply to the +V input of the connector appropriate for your Microstepping MForce PowerDrive model.

Connect the power supply ground to the Power Ground pin appropriate for your Microstepping MForce PowerDrive.

WARNING! The MForce has components which are sensitive to Electrostatic Discharge (ESD). All handling should be done at an ESD protected workstation.

WARNING! Hazardous voltage levels may be present if using an open frame power supply to power your MForce product.

WARNING! Ensure that the power supply output voltage does not exceed the maximum input voltage of the MForce product that you are using!

Note: A characteristic of all motors is back EMF. Back EMF is a source of current that can push the

output of a power supply beyond the maximum operating voltage of the driver. As a result, damage to the stepper driver could occur over a period of time. Care should be taken so that the back EMF does not exceed the maximum input voltage rating of the MForce PowerDrive.

Connect Opto Reference and Logic Inputs

Using 22 AWG wire, connect the Opto Reference to the desired reference point. The reference will determine whether or not the logic input is sinking or sourcing. If Sinking Inputs are desired, connect the Opto reference to a +5 to +24 VDC Supply. If Sourcing Outputs are desired, the Opto Reference needs to be connected to the Controller Ground.

Connect the Step and Direction inputs to the appropriate outputs of your PLC or controller.

Connecting the Motor

Using the recommended wire, connect the Motor Phases to P3 as shown in Figure GS.1. Ensure that the phases are connected correctly.

PART 1: HARDWARE REFERENCE

Section 1.1: Introduction to the Microstepping MForce PowerDrive

Section 1.2: Microstepping MForce PowerDrive Detailed Specifications

Page Intentionally Left Blank

SECTION 1.1

Introduction to the Microstepping MForce PowerDrive

The Microstepping MForce PowerDrive is a high performance, low cost microstepping driver that delivers unsurpassed smoothness and performance achieved through IMS's advanced 2nd generation current control. By applying innovative techniques to control current flow through the motor, resonance is significantly dampened over the entire speed range and audible noise is reduced.

Microstepping MForce PowerDrives accept a broad input voltage range from +12 to +75 VDC, delivering enhanced performance and speed. Oversized input capacitors are used to minimize power line surges, reducing problems that can occur with long runs and multiple drive systems.

Figure 1.1.1: Microstepping MForce PowerDrive

An extended operating range of -40° to +85°C provides long life, trouble free service in demanding environments.

The high, per phase output current of up to 5 Amps RMS, 7 Amps Peak, allows the extremely compact MForce PowerDrive to control a broad array of motors from size 23 to size 42.

The microstepping drive accepts up to 20 resolution settings from full to 256 microsteps per full step, including: degrees, metric and arc minutes. These settings may be changed on-the-fly or downloaded and stored in nonvolatile memory with the use of a simple GUI which is provided. This eliminates the need for external switches or resistors. Parameters are changed via an SPI port.

The versatile Microstepping MForce PowerDrive comes with dual mounting configurations to fit various system needs. All interface connections are accomplished using pluggable locking wire crimp connectors. Optional cables are available for ease of connecting and configuring the MForce, and are recommended with first order.

The Microstepping MForce PowerDrive is a compact, powerful and inexpensive solution that will reduce system cost, design and assembly time for a large range of applications.

Configuring

The IMS SPI Motor Interface software is an easy to install and use GUI for configuring the Microstepping MForce PowerDrive from a computer's USB port. GUI access is via the IMS SPI Motor Interface included on the CD shipped with the product, or from www.imshome.com. Optional cables are available for ease of connecting and configuring the MForce.

The IMS SPI Motor Interface features:

- Easy installation.
- Automatic detection of MForce version and communication configuration.
- Will not set out-of-range values.
- Tool-tips display valid range setting for each option.
- Simple screen interfaces.

Features and Benefits

- High Performance Microstepping Driver
- Advanced 2nd Generation Current Control for Exceptional Performance and Smoothness
- Single Supply: +12 to +75 VDC
- Low Cost
- Extremely Compact
- High Output Current: Up to 5 Amps RMS, 7 Amps Peak (Per Phase)
- 20 Microstep Resolutions up to 51,200 Steps Per Rev Including: Degrees, Metric, Arc Minutes
- Optically Isolated Logic Inputs will Accept +5 to +24 VDC Signals, Sourcing or Sinking
- Automatic Current Reduction
- Configurable:
 - Motor Run/Hold Current
 - Motor Direction vs. Direction Input
 - Microstep Resolution
 - Clock Type: Step and Direction, Quadrature, Step Up and Step Down
 - Programmable Digital Filtering for Clock and Direction Inputs
 - Current and Microstep Resolution May Be Switched On-The-Fly
- Dual Mounting Configurations
- Power, Motor and Signal Interface via locking wire crimp style connectors.
- Graphical User Interface (GUI) for Quick and Easy Parameter Setup

Microstepping MForce PowerDrive Detailed Specifications (E

General Specifications

Electrical Specifications	
Input Voltage (+V) Range*	+12 to +75 VDC
Max Power Supply Current (Per MForce PowerDrive)*	4 Amps
Output Current RMS	5 Amps
Output Current Peak (Per Phase)	7 Amps

* Actual Power Supply Current will depend on Voltage and Load.

Table 1.2.1: Electrical Specifications

Thermal Specifications	
Heat Sink Temperature	-40°C to +85°C

Table 1.2.2: Thermal Specifications

I/O Specifications	
Isolated Inputs — Step Clock, D	irection and Enable
Resolution	10 Bit
Voltage Range (Sourcing or Sinkir	ng) +5 to +24 VDC
Current (+5 VDC Max)	8.7 mA
Current (+24 VDC Max)	14.6 mA

Table 1.2.3: I/O Specifications

Communications Specifications	
Protocol	SPI

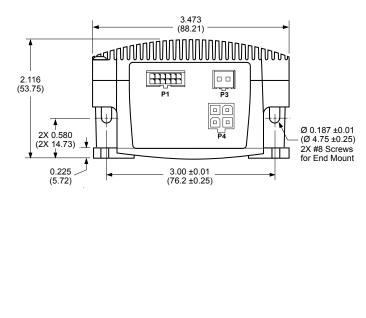
Table 1.2.4: Communications Specifications

Mot	ion Speci	ifications	;								
Microstep Resolution											
Num	nber of Re	solutions									20
				Availab	le Microst	teps Per	Revolutio	n]
	200	400	800	1000	1600	2000	3200	5000	6400	10000]
	12800	20000	25000	25600	40000	50000	51200	36000 ¹	21600 ²	25400 ³]

1=0.01 deg/µstep 2=1 arc minute/µstep 3=0.001 mm/µstep

Digital Filter Range	50 nS to 12.9 μS (10 MHz to 38.8kHz)
Clock Types	Step/Direction, Quadrature, Clock Up/ Clock Down
Step Frequency (Max)	5.0 MHz
Step Frequency Minimum Pulse Width	100 nS

Table 1.2.5: Motion Specifications

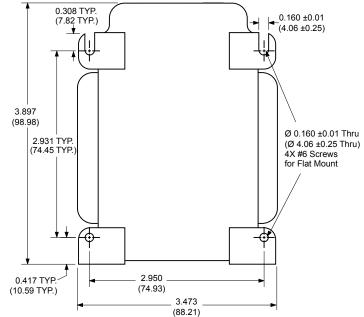

Setup Parameters

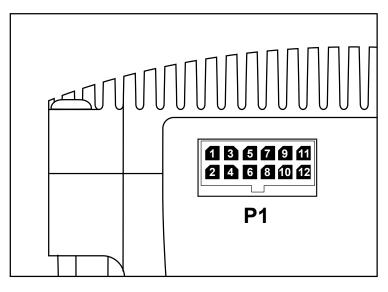
The following table illustrates the setup parameters. These are easily configured using the IMS SPI Motor Interface configuration utility. An optional Parameter Setup Cable is available and recommended with the first order.

Microstepping MForce PowerDrive Setup Parameters					
Name	Function	Range	Units	Default	
MHC	Motor Hold Current	0 to 100	percent	5	
MRC	Motor Run Current	1 to 100	percent	25	
MSEL	Microstep Resolution	1, 2, 4, 5, 8, 10, 16, 25, 32, 50, 64, 100,108, 125, 127,128, 180, 200, 250, 256	µsteps per full step	256	
DIR	Motor Direction Override	0/1	-	CW	
HCDT	Hold Current Delay Time	0 or 2-65535	mSec	500	
CLK TYPE	Clock Type	Step/Dir. Quadrature, Up/Down (CW/CCW)	_	Step/Dir	
CLK IOF	Clock and Direction Filter	50 nS to 12.9 μS (10 MHz to 38.8kHz)	nS (MHz)	200nS(2.5 MHz)	
USER ID	User ID	Customizable	1-3 characters	IMS	
WARN TEMP	Warning Temperature	0 to +125	°C	80	
EN ACT	Enable Active High/Low	High or Low		High	
PWM MSK	PWM Mask	0 to 255		102	
PWM PER	PWM Duty Cycle	0 to 95	Percent	90%	
PWM FREQ	PWM Frequency Range	0 to 255	_	170 (20kHz to 60 kHz)	
PWM CTL	PWM Control	See Section 2.4	See Section 2.4	0-10010	

Table 1.2.6: Setup Parameters

Mechanical Specifications - Dimensions in Inches (mm)




Figure 1.2.1: MForce PowerDrive Mechanical Specifications

Pin Assignment and Description

P1 12-Pin Locking Wire Crimp Connector Option - Power, I/O and SPI Communications

Pin Assignment - F Connections	P1 Power, I/O and SPI	
Pin #	Function	Description
Pin 1	N/C	No Connect
Pin 2	N/C	No Connect
Pin 3	Opto Reference	The Signal applied to the Optocoupler Reference will determine the sinking/ or sourcing configuration of the inputs. To set the inputs for sinking operation, a +5 to +24 VDC supply is connected. If sourcing, the Reference is connected to Ground.
Pin 4	Step Clock/Channel A/ Clock Up	Step Clock input. The step clock input will receive the clock pulses which will step the motor 1 step for each pulse. It may also receive quadrature and clock up type inputs if so configured.
Pin 5	Enable	Enable/Disable Input will enable or disable the driver output to the motor. In the disconnected state the driver outputs are enabled in either sinking or sourcing configuration.
Pin 6	Direction/Channel B/ Clock Down	Direction input. The axis direction will be with respect to the state of the Direction Override Parameter. It may also receive quadrature and clock up type inputs if so configured.
Pin 7	+5 VDC Output	Supply voltage for the MD-CC300-000 Cable ONLY!
Pin 8	SPI Clock	The Clock is driven by the SPI Master. The clock cycles once for each data bit.
Pin 9	GND	Communications Ground.
Pin 10	MISO	Master-In/Slave-Out. Carries output data from the MFM back to the SPI Master.
Pin 11	CS	SPI Chip Select. This signal is used to turn communications on multiple MFM units on or off.
Pin 12	MOSI	Master-Out/Slave-In. Carries output data from the SPI Master to the MFM.

Table 1.2.7: P1 Connector - Power, I/O and SPI Communications

Recommended Connector Shell and Pins

Shell: AMP P/N 1-794617-2 Pins: 12 x AMP P/N 794610-1 Wire: 22 AWG Shielded Twisted Pair

Figure 1.2.2: P1 — 12-Pin Locking Wire Crimp Pin Configuration

NEED A CABLE? The following cables and converters are available to interface with P1:

12-Pin Locking Wire Crimp PD12-1434-FL3

NEED A CABLE? The following cables and converters are available to interface communications with

USB to SPI: MD-C300-000

10-Pin IDC to 12-Pin Locking Wire Crimp Adapter

All SPI Communications will connect to the P1 Connector.

An adapter is available to interface the MD-CC300-000 to the 12-Pin Locking Wire Crimp connector.

MD-ADP-1723C

This adapter may be used in conjunction with the following Prototype Development cables to interface power and logic:

PD12-1434-FL3 (10') ADP-3512-FL (12")

See Appendix A for details.

NEED A CABLE? The following cables

and converters are available to interface with P3:

2-Pin Locking Wire Crimp PD02-3400-FL3

WARNING! Do not plug or unplug DC Power with power applied.

> **NEED A CABLE?** The following cables and converters are available to interface

with P4:

4-Pin Locking Wire Crimp

PD04-MF34-FL3

P3 Connector - DC Power, 2-Pin Locking Wire Crimp

Pin Assignment - P3 Power				
2-Pin Locking Wire Crimp	Function	Description		
Pin 1	+V	+12 to +75 VDC, 4 Amps Maximum per MDrive34Plus.		
Pin 2	GND	Power Supply Return.		

Table 1.2.8: P3 Connector

Recommended Connector Shell and Pins

Shell: Molex P/N 510-67-0200 Pins: 2 x Molex P/N 502-17-9101 Wire: 18 AWG Shielded Twisted Pair

	Ww
P3 2 1	

Figure 1.2.3: P3 — 2-Pin Locking Wire Crimp Pin Configuration

P4 Connector - Motor

Pin Assignment - P4	4 Motor	
5-Pin Locking Wire Crimp	Function	Description
Pin 1	Phase A	Phase A Motor Output
Pin 2	Phase A	Phase A Motor Return
Pin 3	Phase B	Phase B Motor Output
Pin 4	Phase B	Phase B Motor Return
Recommended Cable		
PD04-MF34-FL3]	

Table 1.2.9: P4 Connecter

Recommended Connector Shell and Pins

Shell: Molex P/N 39-01-2045 Pins: 4 x Molex P/N 44476-3112 Wire: 16 AWG Shielded Twisted Pair

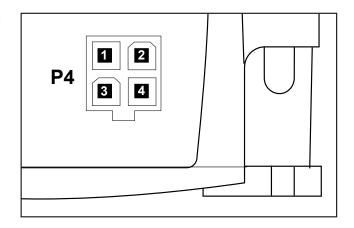


Figure 1.2.4: P4 — 4-Pin Locking Wire Crimp Pin Configuration

Options and Accessories

Parameter Setup Cable and Adapters

The optional 12.0' (3.6m) parameter setup cable part number MD-CC300-000 facilitates communications wiring and is recommended with first order. It connects from the 10-Pin IDC Connector located at P2 to a PC's USB port. If the12-pin pluggable locking wire crimp connector is used at P1, adapter MD-ADP-1723C is required to use the MD-CC300-000.

USB to SPI.....MD-CC300-000

Prototype Development Cable

To speed prototype development, these cables connect to user interface via flying leads with MForce mating connector on opposite end.

Mating connector to 12-pin pluggable locking wire crimp plugs into MForce or adapter MD-ADP-1723C. Choose from 2 lengths:

12.0" (30.5cm)ADP-	·3512-FL
10.0' (3.0m)	434-FL3

Mating connector to MForce 4-pin motor interface:

10.0' (3.0m) PD04-MF17-FL

Page Intentionally Left Blank

PART 2: INTERFACING AND CONFIGURING

Section 2.1: Mounting and Connection Recommendations

Section 2.2: Logic Interface and Connection

Section 2.3: Connecting SPI Communications

Section 2.4: Using the IMS SPI Motor Interface

Section 2.5: Using User-Defined SPI

Page Intentionally Left Blank

Mounting and Connection Guidelines

Mounting Recommendations

The Microstepping MForce PowerDrive may be mounted two ways: end mounted or flat mounted End mounting will use #8 hardware, flat mounting will use standard #6 hardware. Do not exceed the recommended mounting torque specification. The diagrams in Figures 2.1.1 and 2.1.2 illustrate the mounting methods.

Recommended Tightening Torque: 7 - 8 Ib-in (78.4 - 89.6 N-cm)

NOTE: Mounting Hardware is not supplied.

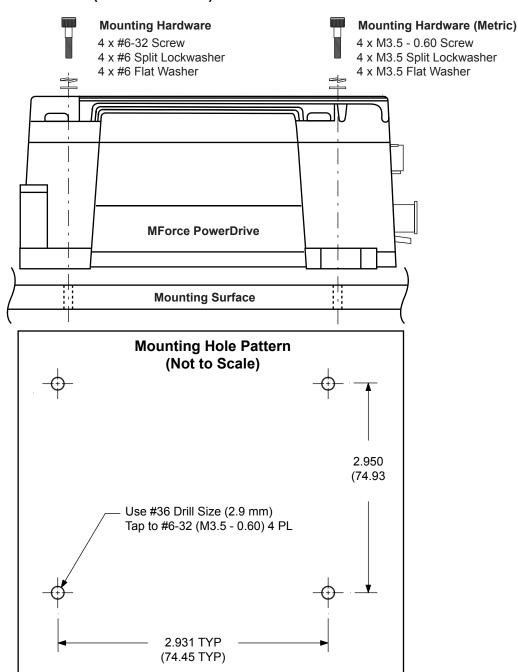


Figure 2.1.1: Base Mounting the MForce PowerDrive

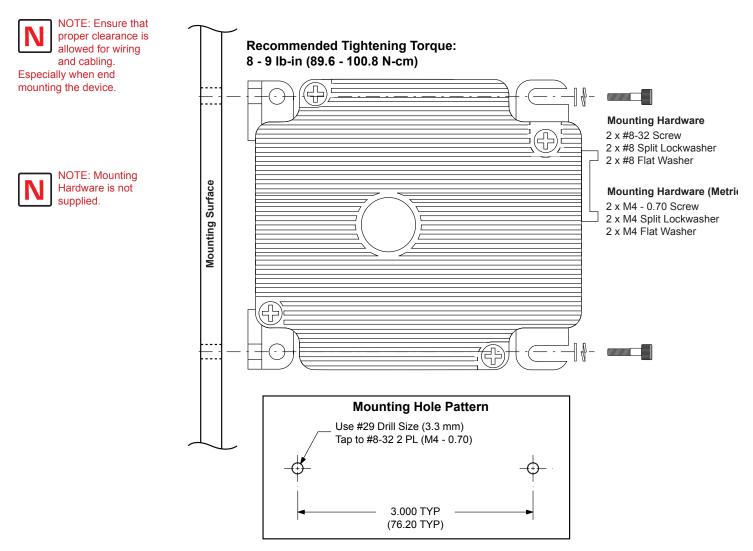


Figure 2.1.2: End Mounting the MForce PowerDrive

Securing Power Leads and Logic Leads

Some applications may require that the MForce and/or the connected motor to move with the axis motion. If this is a requirement of your application, the motor leads must be properly anchored. This will prevent flexing and tugging which can cause damage at critical connection points on the MForce connectors.

Layout and Interface Guidelines

Logic level cables must not run parallel to power cables. Power cables will introduce noise into the logic level cables and make your system unreliable.

Logic level cables must be shielded to reduce the chance of EMI induced noise. The shield needs to be grounded at the signal source to earth. The other end of the shield must not be tied to anything, but allowed to float. This allows the shield to act as a drain.

Power supply leads to the MForce PowerDrive need to be twisted. If more than one driver is to be connected to the same power supply, run separate power and ground leads from the supply to each driver.

Rules of Wiring

- Power Supply and Motor wiring should be shielded twisted pairs, and run separately from signalcarrying wires.
- A minimum of one twist per inch is recommended.
- Motor wiring should be shielded twisted pairs using 20 gauge, or for distances of more than 5 feet, 18 gauge or better.
- Power ground return should be as short as possible to established ground.
- Power supply wiring should be shielded twisted pairs of 18 gauge for less than 4 amps DC and 16 gauge for more than 4 amps DC.

Rules of Shielding

- The shield must be tied to zero-signal reference potential. It is necessary that the signal be earthed or grounded, for the shield to become earthed or grounded. Earthing or grounding the shield is not effective if the signal is not earthed or grounded.
- Do not assume that Earth ground is a true Earth ground. Depending on the distance from the main power cabinet, it may be necessary to sink a ground rod at the critical location.
- The shield must be connected so that shield currents drain to signal-earth connections.
- The number of separate shields required in a system is equal to the number of independent signals being processed plus one for each power entrance.
- The shield should be tied to a single point to prevent ground loops.
- A second shield can be used over the primary shield; however, the second shield is tied to ground at both ends.

Recommended Wiring

The following wiring/cabling is recommended for use with the MForce PowerDrive:

Logic Wiring	
Wire Strip Length	
Power and Ground	
Motor	
*See Table 2.2.1 if using a power cable longer than and legnth.	10 feet. The Gauge used is dependant upon supply current

Recommended Mating Connectors and Pins

Logic and SPI Communications (P1)

12-pin Locking Wire Crimp Connector Shell Crimp Pins	
Power (P3)	
2-pin Locking Wire Crimp Connector Shell	
Crimp Pins	Molex 50217-9101 Brass
Motor (P4)	

4-pin Locking Wire Crimp Connector Shell Mole	x 3901-2045
Crimp Pins Molex	44476-3112

Page Intentionally Left Blank

Interfacing DC Power

Choosing a Power Supply for Your MForce PowerDrive

When choosing a power supply for your MForce PowerDrive there are performance and sizing issues that must be addressed. An undersized power supply can lead to poor performance and even possible damage to the device, which can be both time consuming and expensive. However, The design of the MForce PowerDrive is quite efficient and may not require as large a supply as you might suspect.

Motors have windings that are electrically just inductors, and with inductors comes resistance and inductance. Winding resistance and inductance result in a L/R time constant that resists the change in current. It requires five time constants to reach nominal current. To effectively manipulate the di/dt or the rate of charge, the voltage applied is increased. When traveling at high speeds there is less

Figure 2.2.1: IMS ISP300 Switch Mode Power Supply

time between steps to reach current. The point where the rate of commutation does not allow the driver to reach full current is referred to as Voltage Mode. Ideally you want to be in Current Mode, which is when the drive is achieving the desired current between steps. Simply stated, a higher voltage will decrease the time it takes to charge the coil, and therefore will allow for higher torque at higher speeds.

Another characteristic of all motors is Back EMF, and though nothing can be done about back EMF, we can give a path of low impedance by supplying enough output capacitance. Back EMF is a source of current that can push the output of a power supply beyond the maximum operating voltage of the driver and as a result could damage the MForce PowerDrive over time.

The MForce PowerDrive is very current efficient as far as the power supply is concerned. Once the motor has charged one or both windings of the motor, all the power supply has to do is replace losses in the system. The charged winding acts as an energy storage in that the current will re-circulate within the bridge, and in and out of each phase reservoir. While one phase is in the decaying stage of the variable chopping oscillator, the other phase is in the charging stage, this results in a less than expected current draw on the supply.

The MForce PowerDrive is designed with the intention that a user's power supply output will ramp up to greater or equal to the minimum operating voltage. The initial current surge is quite substantial and could damage the driver if the supply is undersized. If a power supply is undersized, upon a current surge the supply could fall below the operating range of the driver. This could cause the power supply to start oscillating in and out of the voltage range of the driver and result in damaging either the supply, driver or both. There are two types of supplies commonly used, regulated and unregulated, both of which can be switching or linear. All have their advantages and disadvantages.

An unregulated linear supply is less expensive and more resilient to current surges, however, voltage decreases with increasing current draw. This can cause serious problems if the voltage drops below the working range of the drive. Also of concern is the fluctuations in line voltage. This can cause the unregulated linear supply to be above or below the anticipated voltage.

A regulated supply maintains a stable output voltage, which is good for high speed performance. They are also not bothered by line fluctuations, however, they are more expensive. Depending on the current regulation, a regulated supply may crowbar or current clamp and lead to an oscillation that as previously stated can lead to damage. Back EMF can cause problems for regulated supplies as well. The current regeneration may be too large for the regulated supply to absorb and may lead to an over voltage condition.

Switching supplies are typically regulated and require little real-estate, which makes them attractive. However, their output response time is slow, making them ineffective for inductive loads. IMS has designed a series of low cost miniature non-regulated switchers that can handle the extreme varying load conditions which makes them ideal for the MForce PowerDrive.

DC Power Supply Recommendations

The power requirements for the Microstepping MForce PowerDrive are:

Output Voltage	+12 to +75 VDC (Includes Back EMF)
Current (max. per unit)	
(Actual power supply current requirement will depen	

Recommended IMS Power Supplies

IMS unregulated linear and unregulated switching power supplies are the best fit for IMS drive products.

IP804 Unregulated Linear Supply

Input Range	
120 VAC Versions	102-132 VAC
240 VAC Versions	204-264 VAC
Output (All Measurements were taken at 25 °C, 120 VAC, 60 Hz)	
No Load Output Voltage	76 VDC @ 0 Amps
Half Load Output	
Full Load output	SOLUDIO O ()

IP806 Unregulated Linear Supply

Input Range	
120 VAC Versions	102-132 VAC
240 VAC Versions	204-264 VAC
Output (All Measurements were taken at 25 °C, 120 VAC, 60 Hz)	
No Load Output Voltage	
Half Load Output	
Full Load Output	64 VDC @ 6 Amps

ISP300-7 Unregulated Switching Supply

Input Range	
120 VAC Versions	102-132 VAC
240 VAC Versions	204-264 VAC
Output (All Measurements were taken at 25 °C, 120 VAC, 60 Hz)	
No Load Output Voltage	
Continuous Output Rating	
Peak Output Rating	

Basic DC Power Connection

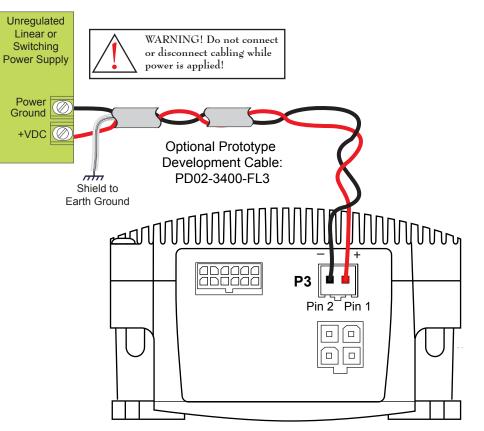


Figure 2.2.2: MForce PowerDrive DC Power Connection

Recommended Power and Cable Configurations

Cable length, wire gauge and power conditioning devices play a major role in the performance of your MForce PoweDrive.

Example A demonstrates the recommended cable configuration for DC power supply cabling under 50 feet long. If cabling of 50 feet or longer is required, the additional length may be gained by adding an AC power supply cable (see Examples B & C).

Correct AWG wire size is determined by the current requirement plus cable length. Please see Table 2.2.1 for recommended wire gauges.

Example A: DC Power Cabling Under 50 Feet

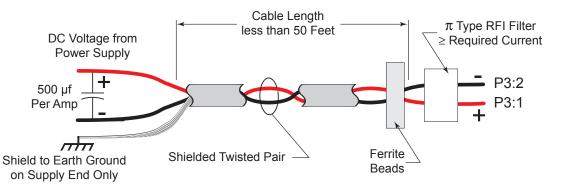


Figure 2.2.3: DC Cabling - Under 50 Feet

Example B: AC Power to Full Wave Bridge Cabling Over 50 Feet

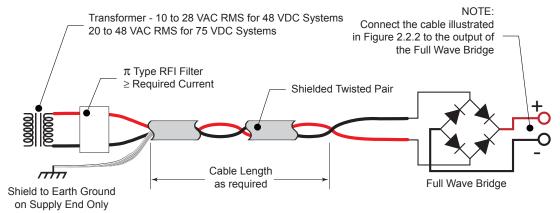


Figure 2.2.4: AC To Full Wave Bridge Rectifier, Cabling over 50 Feet

Example C – Cabling 50 Feet or Greater, AC Power to Power Supply

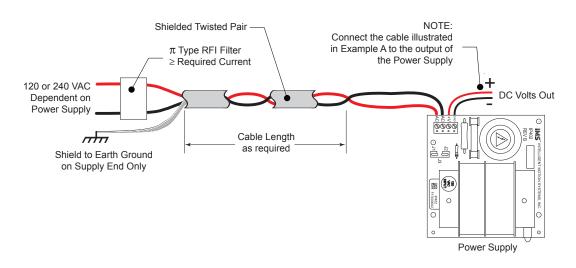


Figure 2.2.5: AC Cabling - 50 Feet or Greater - AC To Power Supply

MForce PowerDrive Recommended Power Supply Cable AWG												
1 Amperes (Peak)						3 Amp	eres (P	eak)				
Length (Feet)	10	25	50*	75*	100*		Length (Feet)	10	25	50*	75*	100*
Minimum AWG	20	20	18	18	16		Minimum AWG	18	16	14	12	12
2 Amperes (Peak) 4 Amperes (Peak)												
Length (Feet)	10	25	50*	75*	100*		Length (Feet)	10	25	50*	75*	100*
Minimum AWG	20	18	16	14	14		Minimum AWG	18	16	14	12	12

*Use the alternative methods illustrated in examples B and C when cable length is \geq 50 feet. Also, use the same current rating when the alternate AC power is used.

Table 2.2.1: Recommended Wire Gauges

Motor Selection and Interface

Selecting a Motor

When selecting a stepper motor for your application, there are several factors that need to be taken into consideration:

- How will the motor be coupled to the load?
- How much torque is required to move the load?
- How fast does the load need to move or accelerate?
- What degree of accuracy is required when positioning the load?

While determining the answers to these and other questions is beyond the scope of this document, they are details that you must know in order to select a motor that is appropriate for your application. These details will affect everything from the power supply voltage to the type and wiring configuration of your stepper motor. The current and microstepping settings of your Microstepping MForce PowerDrive will also be affected.

Types and Construction of Stepping Motors

The stepping motor, while classed as a DC motor, is actually an AC motor that is operated by trains of pulses. Although it is called a "stepping motor", it is in reality a polyphase synchronous motor. This means it has multiple phases wound in the stator and the rotor is dragged along in synchronism with the rotating magnetic field. The MForce PowerDrive is designed to work with the following types of stepping motors:

- 1) Permanent Magnet (PM)
- 2) Hybrid Stepping Motors

Hybrid stepping motors combine the features of the PM stepping motors with the features of another type of stepping motor called a variable reluctance motor (VR). VR motors are low torque and load capacity motors which are typically used in instrumentation. The MForce PowerDrive cannot be used with VR motors as they have no permanent magnet.

On hybrid motors, the phases are wound on toothed segments of the stator assembly. The rotor consists of a permanent magnet with a toothed outer surface which allows precision motion accurate to within \pm 3 percent. Hybrid stepping motors are available with step angles varying from 0.45° to 15° with 1.8° being the most commonly used. Torque capacity in hybrid steppers ranges from 5 - 8000 ounce-inches. Because of their smaller step angles, hybrid motors have a higher degree of suitability in applications where precise load positioning and smooth motion is required.

Sizing a Motor for Your System

The MForce PowerDrive is a bipolar driver which works equally well with both bipolar and unipolar motors (i.e. 8 and 4 lead motors, and 6 lead center tapped motors).

To maintain a given set motor current, the MForce PowerDrive chops the voltage using a variable chopping frequency and a varying duty cycle. Duty cycles that exceed 50% can cause unstable chopping. This characteristic is directly related to the motor's winding inductance. In order to avoid this situation, it is necessary to choose a motor with a low winding inductance. The lower the winding inductance, the higher the step rate possible.

Winding Inductance

Since the MForce PowerDrive is a constant current source, it is not necessary to use a motor that is rated at the same voltage as the supply voltage. What is important is that the MForce PowerDrive is set to the motor's rated current.

The higher the voltage used the faster the current can flow through the motor windings. This in turn means a higher step rate, or motor speed. Care should be taken not to exceed the maximum voltage of the driver. Therefore, in choosing a motor for a system design, the best performance for a specified torque is a motor with the lowest possible winding inductance used in conjunction with highest possible driver voltage.

The winding inductance will determine the motor type and wiring configuration best suited for your system. While the equation used to size a motor for your system is quite simple, several factors fall into play at this point.

The winding inductance of a motor is rated in milliHenrys (mH) per Phase. The amount of inductance will depend on the wiring configuration of the motor.

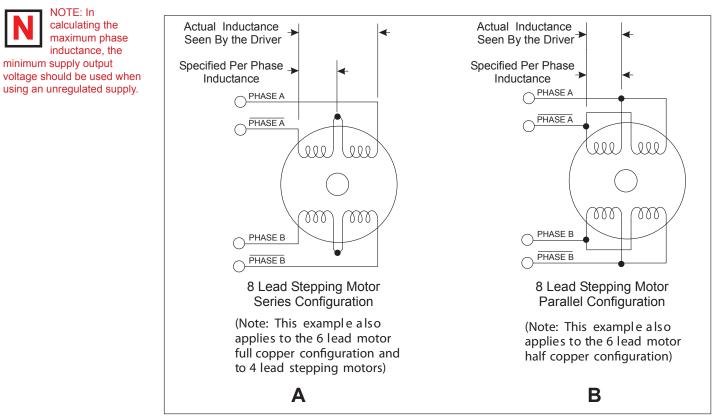


Figure 2.3.1 A & B: Per Phase Winding Inductance

The per phase winding inductance specified may be different than the per phase inductance seen by your MForce PowerDrive driver depending on the wiring configuration used. Your calculations must allow for the actual inductance that the driver will see based upon the wiring configuration.

Figure 2.3.1A shows a stepper motor in a series configuration. In this configuration, the per phase inductance will be 4 times that specified. For example: a stepping motor has a specified per phase inductance of 1.47mH. In this configuration the driver will see 5.88 mH per phase.

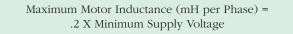


Figure 2.3.1B shows an 8 lead motor wired in parallel. Using this configuration the per phase inductance seen by the driver will be as specified.

Using the following equation we will show an example of sizing a motor for a MForce PowerDrive used with an unregulated power supply with a minimum voltage (+V) of 18 VDC:

.2 X 18 = 3.6 mH

The recommended per phase winding inductance we can use is 3.6 mH.

Recommended IMS Motors

IMS also carries a series of 23 and 34 frame enhanced stepping motors that are recommended for use with the MForce PowerDrive. These motors use a unique relationship between the rotor and stator to generate more torque per frame size while ensuring more precise positioning and increased accuracy.

The special design allows the motors to provide higher torque than standard stepping motors while maintaining a steadier torque and reducing torque drop-off.

Each frame size is available in 3 stack sizes, single or double shaft, with or without encoders. They handle currents up to 2.4 Amps in series or 6 Amps parallel, and holding torque ranges from 90 oz.-in. (M-2218-2.4) to 1303 oz.-in (M-3447-6.3) (64 N-cm to 920 N-cm).

These CE rated motors are ideal for applications where higher torque is required.

For more detailed information on these motors, please see the IMS Full Line catalog or the IMS web site at http://www.imshome.com._

23 Frame Enhanced (2.4A - Not Available with Double Shaft)

Single Shaft	Double Shaft
M-2218-2.4S	N/A
M-2222-2.4S	N/A
M-2231-2.4S	N/A

23 Frame Enhanced (3.0A)

Single Shaft	Double Shaft
M-2218-3.0S	M-2218-3.0D
M-2222-3.0S	M-2222-3.0D
M-2231-3.0S	

23 Frame Enhanced (6.0A)

Single Shaft	Double Shaft
M-2218-6.0S	M-2218-6.0D
M-2222-6.0S	M-2222-6.0D
M-2231-6.0S	M-2231-6.0D

34 Frame Enhanced (6.3A)

Single Shaft	Double Shaft
M-3424-6.3S	M-3424-6.3-D
M-3431-6.38	M-3431-6.3D
M-3447-6.3S	M-3447-6.3D

IMS also offers 23 and 34 Frame hybrid linear actuators for use with the MForce PowerDrive. Please see the IMS Full Line catalog or the IMS web site at *http://www.imshome.com*.

IMS Inside Out Stepper Motors

The new inside out stepper (IOS) motor was designed by IMS to bring versatility to stepper motors using a unique multi-functional, hollow core design.

This versatile new motor can be converted to a ball screw linear actuator by mounting a miniature ball screw to the front shaft face. Ball screw linear actuators offer long life, high efficiency, and can be field retrofitted. There is no need to throw the motor away due to wear of the nut or screw.

The IOS motors offer the following features:

- The shaft face diameter offers a wide choice of threaded hole patterns for coupling.
- The IOS motor can be direct coupled in applications within the torque range of the motor, eliminating couplings and increasing system efficiency.
- The IOS motor can replace gearboxes in applications where gearboxes are used for inertia damping between the motor and the load. The induced backlash from the gearbox is eliminated providing improved bidirectional position accuracy.
- Electrical or pneumatic lines can be directed through the center of the motor enabling the motors to be stacked end-to-end or applied in robotic end effector applications. The through hole is stationary, preventing cables from being chaffed by a moving hollow shaft.
- Light beams can be directed through the motor for refraction by a mirror or filter wheel mounted on the shaft mounting face.
- The IOS motor is adaptable to valves enabling the valve stem to protrude above the motor frame. The stem can be retrofitted with a dial indicator showing valve position.
- The motor is compatible with IMS bipolar drivers, keeping the system cost low.
- The IOS motor can operate up to 3000 rpm's.

The IOS motor is available in the following frames:

Frame Size	IMS PN
23 Frame	M3-2220-IOS
34 Frame	M3-3424-IOS

Connecting the Motor

The motor leads are connected to the following connector pins:

Phase	Connector: Pin
Phase A	
Phase A	
Phase B	
Phase B	

8 Lead Motors

8 lead motors offer a high degree of flexibility to the system designer in that they may be connected in series or parallel, thus satisfying a wide range of applications.

Series Connection

A series motor configuration would typically be used in applications where a higher torque at lower speeds is required. Because this configuration has the most inductance, the performance will start to degrade at higher speeds. Use the per phase (or unipolar) current rating as the peak output current, or multiply the bipolar current rating by 1.4 to determine the peak output current.

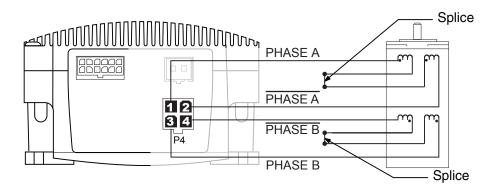


Figure 2.3.2: 8 Lead Motor Series Connections

Parallel Connection

An 8 lead motor in a parallel configuration offers a more stable, but lower torque at lower speeds. But because of the lower inductance, there will be higher torque at higher speeds. Multiply the per phase (or unipolar) current rating by 1.96, or the bipolar current rating by 1.4, to determine the peak output current.

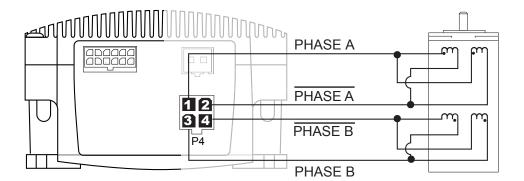


Figure 2.3.3: 8 Lead Motor Parallel Connections

6 Lead Motors

Like 8 lead stepping motors, 6 lead motors have two configurations available for high speed or high torque operation. The higher speed configuration, or *half coil*, is so described because it uses one half of the motor's inductor windings. The higher torque configuration, or *full coil*, uses the full windings of the phases.

Half Coil Configuration

As previously stated, the half coil configuration uses 50% of the motor phase windings. This gives lower inductance, hence, lower torque output. Like the parallel connection of 8 lead motor, the torque output will be more stable at higher speeds. This configuration is also referred to as *half copper*. In setting the driver output current multiply the specified per phase (or unipolar) current rating by 1.4 to determine the peak output current.

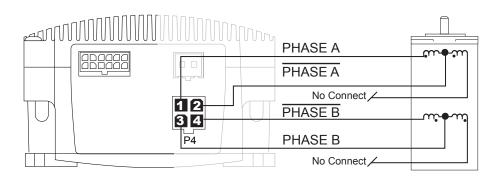


Figure 2.3.4: 6 Lead Half Coil (Higher Speed) Motor Connections

Full Coil Configuration

The full coil configuration on a six lead motor should be used in applications where higher torque at lower speeds is desired. This configuration is also referred to as *full copper*. Use the per phase (or unipolar) current rating as the peak output current.



Figure 2.3.5: 6 Lead Half Coil (Higher Speed) Motor Connections

4 Lead Motors

4 lead motors are the least flexible but easiest to wire. Speed and torque will depend on winding inductance. In setting the driver output current, multiply the specified phase current by 1.4 to determine the peak output current.

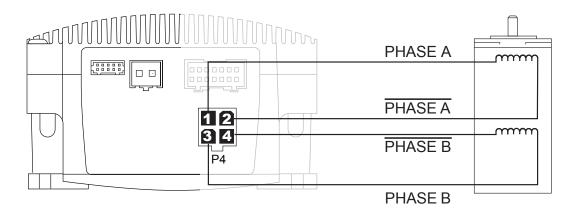


Figure 2.3.6: 4 Lead Motor Connections

Recommended Motor Cabling

As with the power supply wiring, motor wiring should be run separately from logic wiring to minimize noise coupled onto the logic signals. Motor cabling exceeding 1' in length should be shielded twisted pairs to reduce the transmission of EMI (Electromagnetic Interference) which can lead to rough motor operation and poor system performance.

Cable length, wire gauge and power conditioning devices play a major role in the performance of your MForce PowerDrive and Stepper Motor.

NOTE: The length of the DC power supply cable between the MForce PowerDrive and the Motor should not exceed 50 feet.

Example A demonstrates the recommended cable configuration for the MForce PowerDrive to Motor cabling under 50 Feet long. If cabling of 50 feet or longer is required, the additional length can be gained with the cable configuration in Example B.

Correct AWG wire size is determined by the current requirement plus cable length. Please see Table 2.3.1 on the following page.

Example A: Motor Cabling Less Than 50 Feet

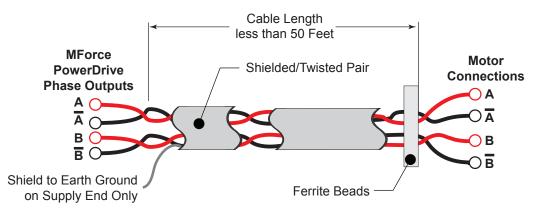


Figure 2.3.7: Motor Cabling Less than 50 Feet

Example B: Motor Cabling Greater Than 50 Feet

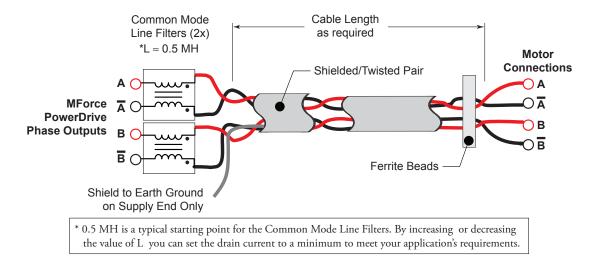


Figure 2.3.8: Motor Cableing Greater than 50 Feet

Recommended Motor Cable AWG Sizes

MForce PowerDrive Recommer				ended		
Amper	es (Pea	ak)				
10	25	50*	75*	100*		Leng
20	20	18	18	16		Minim
Amper	es (Pea	ak)				
10	25	50*	75*	100*		Leng
20	18	16	14	14		Minim
3 Amperes (Peak)						
10	25	50*	75*	100*		Leng
18	16	14	12	12		Minim
4 Amperes (Peak)				*Use t		
10	25	50*	75*	100*		B whe curren
18	16	14	12	12		ounch
	Amper 10 20 Amper 10 20 Amper 10 18 Amper 10	Amperes (Per 10 25 20 20 Amperes (Per 10 25 20 18 Amperes (Per 10 25 20 18 Amperes (Per 10 25 18 16 Amperes (Per 10 25 18 16 Amperes (Per 10 25	Amperes (Peak) 10 25 50* 20 20 18 Amperes (Peak) 10 25 50* 20 18 16 20 18 50* 20 18 16 Amperes (Peak) 10 25 50* 10 25 50* 18 16 14 Amperes (Peak) 10 25 50* 10 25 50* 50*	Amperes (Peak) 10 25 50* 75* 20 20 18 18 Amperes (Peak) 10 25 50* 75* 20 18 16 14 Amperes (Peak) 10 25 50* 75* 10 25 50* 75* 10 25 50* 75* 18 16 14 12 Amperes (Peak) 10 25 50* 75* 18 16 14 12 Amperes (Peak) 10 25 50* 75*	Amperes (Peak) 10 25 50* 75* 100* 20 20 18 18 16 Amperes (Peak) 10 25 50* 75* 100* 20 18 16 14 14 Amperes (Peak) 10 25 50* 75* 100* 10 25 50* 75* 100* 18 16 14 12 12 Amperes (Peak) 10 25 50* 75* 100* Amperes (Peak) 10 25 50* 75* 100*	Amperes (Peak)102550*75*100*2020181816Amperes (Peak)102550*75*100*2018161414Amperes (Peak)102550*75*100*1816141212Amperes (Peak)102550*75*100*In 2550*75*100*

m	nended Motor Cable AWG					
	5 Amperes (Peak)					
	Length (Feet)	10	25	50*	75*	100*
	Minimum AWG	16	16	14	12	12
	6 Amperes (Peak)					
	Length (Feet)	10	25	50*	75*	100*
	Minimum AWG	14	14	14	12	12
	7 Amperes (Peak)					
	Length (Feet)	10	25	50*	75*	100*
	Minimum AWG	12	12	12	12	12

*Use the alternative methods illustrated in example B when cable length is ≥ 50 feet. Also, use the same current rating when the alternate AC power is used.

Table 2.3.1: Recommended Wire Gauges

Logic Interface and Connection

Optically Isolated Logic Inputs

The Microstepping MForce PowerDrive has three optically isolated logic inputs which are located on connector P1. These inputs are isolated to minimize or eliminate electrical noise coupled onto the drive control signals. Each input is internally pulled-up to the level of the optocoupler supply and may be connected to sinking or +5 to +24 VDC sourcing outputs on a controller or PLC. These inputs are:

1] Step Clock (SCLK)/Quadrature (CH A)/Clock UP

2] Direction (DIR)/Quadrature (CH B)/ Clock DOWN

3] Enable (EN)

Of these inputs only step clock and direction are required to operate the Microstepping MForce PowerDrive.

Isolated Logic Input Pins and Connections

The following diagram illustrates the pins and connections for the Microstepping MForce PowerDrive family of products. Careful attention should be paid to verify the connections on the model Microstepping MForce PowerDrive you are using.

Isolated Logic Input Characteristics

Enable Input

This input can be used to enable or disable the driver output circuitry. Leaving the enable switch open (Logic HIGH, Disconnected) for sinking or sourcing configuration, the driver outputs will be enabled and the step clock pulses will cause the motor to advance. When this input switch is closed (Logic LOW) in both sinking

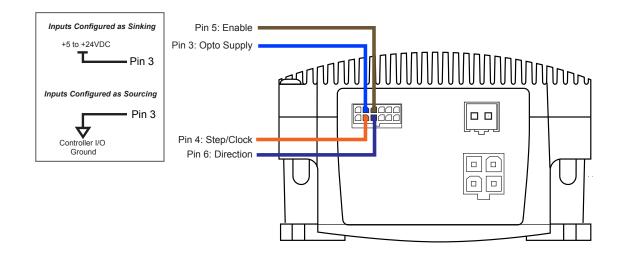
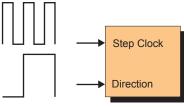


Figure 2.4.1: Isolated Logic Pins and Connections

and sourcing configurations, the driver output circuitry will be disabled. Please note that the internal sine/cosine position generator will continue to increment or decrement as long as step clock pluses are being received by the Microstepping MForce PowerDrive.

Clock Inputs

The Microstepping MForce PowerDrive features the ability to configure the clock inputs based upon how the user will desire to control the drive. By default the unit is configured for the Step/Direction function.


Step Clock

The step clock input is where the motion clock from your control circuitry will be connected. The motor will advance one microstep in the plus or minus direction (based upon the state of the direction input) on the rising edge of each clock pulse. The size of this increment or decrement will depend on the microstep resolution setting.

Direction

The direction input controls the CW/CCW direction of the motor. The input may be configured as sinking or sourcing based upon the state of the Optocoupler Reference. The CW/CCW rotation, based upon the state of the input may be set using the IMS Motor Interface software included with the Microstepping MForce PowerDrive.

Step/Direction Function

Quadrature Function

Up/Down Function

Channel A

Channel B

CW

CCW

Quadrature

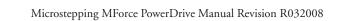
The Quadrature clock function would typically be used for following applications where the Microstepping MForce PowerDrive would be slaved to an MForce PowerDrive Microstepping (or other controller) in an electronic gearing application.

Up/Down

The Up/Down clock would typically be used in a dualclock direction control application.

Input Timing

The direction input and the microstep resolution inputs are internally synchronized to the positive going edge of the step clock input. When a step clock pulse goes HIGH, the state of the direction input and microstep resolution settings are latched. Any changes made to the direction and/or microstep resolution will occur on the rising edge of the step clock pulse following this change. Run and Hold Current changes are updated immediately. The following figure and table list the timing specifications.


Input Filtering

The clock inputs may also be filtered using the Clock IOF pull down of the IMS SPI Motor Interface. The filter range is from 50 nS (10 MHz) to 12.9 µSec. (38.8 kHz).

Figure 2.4.2: Input Clock Functions

The configuration parameters for the input filtering is covered in detail in Section 2.4: Configuring the Microstepping MForce PowerDrive.

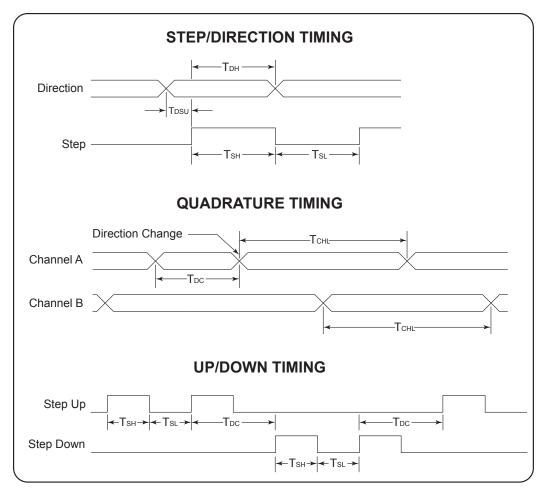
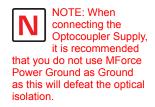
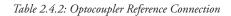



Figure 2.4.3: Clock Input Timing Characteristics

	Clock Input Timing						
Symbol	Symbol Parameter		Type and Value				
Symbol	Farameter	Step/Direction	Step Up/Down	Quadrature	Units		
T _{DSU}	T Direction Set Up	50	_	_	nS min		
T _{DH}	T Direction Hold	100	—	—	nS min		
т _{sн}	T Step High	100	100	—	nS min		
T _{SL}	T Step Low	100	100	—	nS min		
T _{DL}	T Direction Change	—	200	200	nS min		
T _{CHL}	T Channel High/Low	—	—	400	nS min		
F _{SMAX}	F Step Maximum	5	5		MHz Max		
F _{CHMAX}	F Channel Maximum	—	—	1.25	MHz Max		
F _{ER}	F Edge Rate	—	—	5	MHz Max		

Table 2.4.1: Input Clocks Timing Table



Optocoupler Reference

The Microstepping MForce PowerDrive Logic Inputs are optically isolated to prevent electrical noise being coupled into the inputs and causing erratic operation.

There are two ways that the Optocoupler Reference will be connected depending whether the Inputs are to be configured as sinking or sourcing.

Optocoupler Reference			
Input Type Optocoupler Reference Connection			
Sinking	+5 to +24 VDC		
Sourcing	Controller Ground		

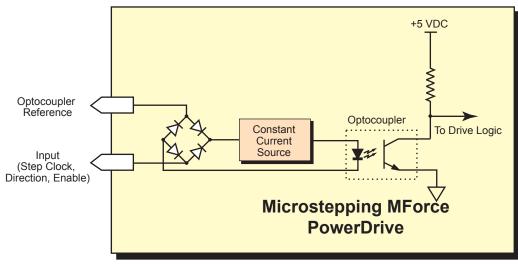


Figure 2.4.4: Optocoupler Input Circuit Diagram

Input Connection Examples

The following diagrams illustrate possible connection/application of the Microstepping MForce PowerDrive Logic Inputs.

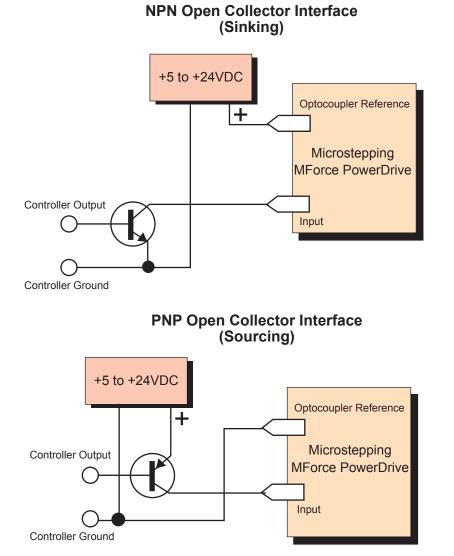
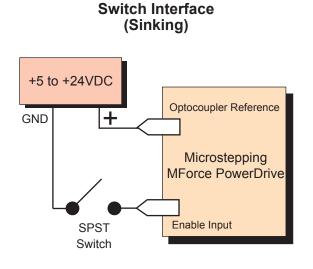
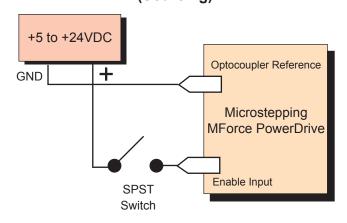




Figure 2.4.5: Open Collector Interface Example

Switch Interface (Sourcing)

Figure 2.4.6: Switch Interface Example

Minimum Required Connections

The connections shown are the minimum required to operate the Microstepping MForce PowerDrive. These are illustrated in both Sinking and Sourcing Configurations. Please reference the Pin Configuration diagram and Specification Tables for the Microstepping MForce PowerDrive connector option you are using.

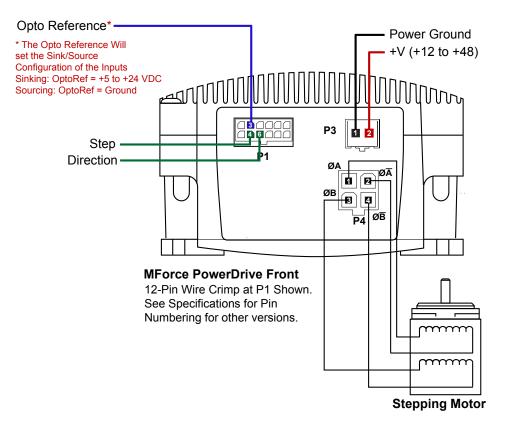


Figure 2.4.7: Minimum Required Connections

Connecting SPI Communications

Connecting the SPI Interface

The SPI (Serial Peripheral Interface) is the communications and configuration interface.

For prototyping we recommend the purchase of the parameter setup cable MD-CC300-000. If using the Microstepping MForce PowerDrive with the 10-Pin IDC on P2, this cable will plug directly into the P2 Connector.

If using the model with a 12-Pin Locking Wire Crimp connector, adapters are available to interface the parameter setup cable to P1.

Figure 2.5.1: MD-CC300-000 Parameter Setup Cable

For more information on prototype development cables, please see Appendix: Prototype Development Cables.

SPI Signal Overview

+5 VDC (Output)

This output is a voltage supply for the setup cable only. It is not designed to power any external devices.

SPI Clock

The Clock is driven by the Master and regulates the flow of the data bits. The Master may transmit data at a variety of baud rates. The Clock cycles once for each bit that is transferred.

Logic Ground

This is the ground for all Communications.

MISO (Master In/Slave Out)

Carries output data from the Microstepping MForce PowerDrive units back to the SPI Master. Only one MForce PowerDrive can transmit data during any particular transfer.

CS (SPI Chip Select)

This signal is used to turn multiple Microstepping MForce PowerDrive units on or off.

MOSI (Master Out/Slave In)

Carries output data from the SPI Master to the Microstepping MForce PowerDrive.

SPI Pins and Connections

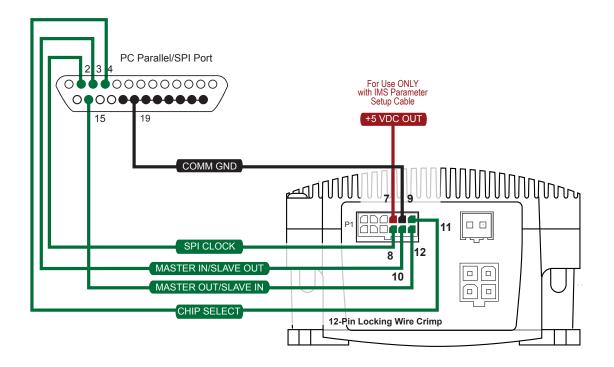


Figure 2.5.2: SPI Pins and Connections, 12-Pin Wire Crimp

Logic Level Shifting and Conditioning Circuit

The following circuit diagram is of a Logic Level shifting and conditioning circuit. This circuit should be used if you are making your own parameter cable and are using a laptop computer with 3.3 V output parallel ports.

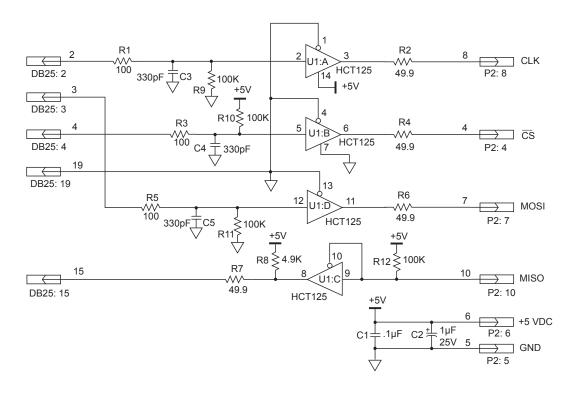


Figure 2.5.3: Logic Level Shifting and Conditioning Circuit

NOTE: If making your own parameter setup cable, be advised the 3.3V output parallel ports on some laptop

PC's may not be sufficient to communicate with the device without use of a logic level shifting and conditioning Interface.

SPI Master with Multiple Microstepping MForce PowerDrive

It is possible to link multiple Microstepping MForce PowerDrive units in an array from a single SPI Master by wiring the system and programming the user interface to write to multiple chip selects.

Each MForce on the bus will have a dedicated chip select. Only one system MForce can be communicated with/Parameters changed at a time.

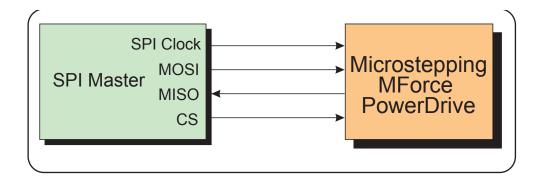


Figure 2.5.4: SPI Master with a Single Microstepping MForce PowerDrive

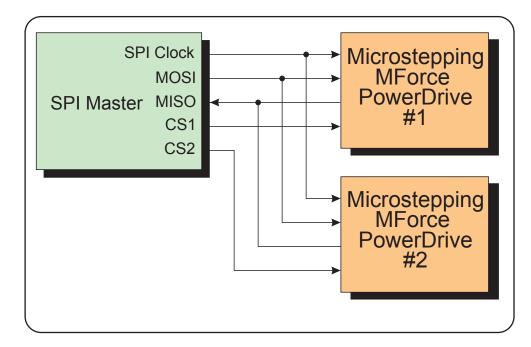


Figure 2.5.5: SPI Master with Multiple Microstepping MForce PowerDrives

Using the IMS SPI Motor Interface

Installation

The IMS SPI Motor Interface is a utility that easily allows you to set up the parameters of your Microstepping MForce PowerDrive. It is available both on the CD that came with your product and on the IMS web site at http://www.imshome.com/software_interfaces.html.

- 1. Insert the CD into the CD Drive of your PC.
 - If not available, go to http://www.imshome.com/software_interfaces.html.
- 2. The CD will auto-start.
- 3. Click the Software Button in the top-right navigation Area.
- 4. Click the IMS SPI Interface link appropriate to your operating system.
- 5. Click SETUP in the Setup dialog box and follow the on-screen instructions.
- 6. Once IMS SPI Motor Interface is installed, the Microstepping MForce PowerDrive settings can be checked and/or set.

Configuration Parameters and Ranges

	Microstepping MForce PowerDrive Setup Parameters				
Name	Function Range		Units	Default	
MHC	Motor Hold Current	0 to 100	percent	5	
MRC	Motor Run Current	1 to 100	percent	25	
MSEL	Microstep Resolution	1, 2, 4, 5, 8, 10, 16, 25, 32, 50, 64, 100,108, 125, 127,128, 180, 200, 250, 256	µsteps per full step	256	
DIR	Motor Direction Override	0/1	-	CW	
HCDT	Hold Current Delay Time	0 or 2-65535	mSec	500	
CLK TYPE	Clock Type	Step/Dir. Quadrature, Up/Down	-	Step/Dir	
CLK IOF	Clock and Direction Filter	50 nS to 12.9 μS (10 MHz to 38.8kHz)	nS (MHz)	50nS (10 MHz)	
USER ID	User ID	Customizable	1-3 characters	IMS	
EN ACT	Enable Active High/Low	High/Low	_	High	
WARN TEMP	Warning Temperature	0 to + 125	°C	80	

Table 2.6.1: Setup Parameters and Ranges

Color Coded Parameter Values

The SPI Motor Interface displays the parameter values using a predefined system of color codes to identify the status of the parameter.

- 1. Black: the parameter settings currently stored in the device NVM will display as black.
- 2. Blue: Blue text indicates a changed parameter setting that has not yet been written to the device.
- 3. Red: Red text indicates an out-of-range value which cannot be written to the device. When an out-of-range parameter is entered into a field, the "set" button will disable, preventing the value to be written to NVM. To view the valid parameter range, hover the mouse pointer over the field. The valid range will display in a tool tip.

The color coding is illustrated in Figure 2.5.1.

Blue: New Value which has not yet been set to NVM.

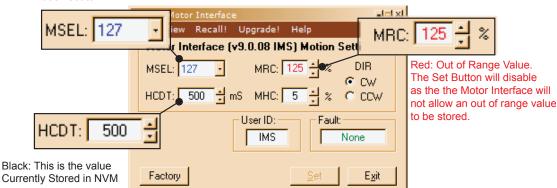


Figure 2.6.1: SPI Motor Interface Color Coding

IMS SPI Motor Interface Menu Options

File

- > Open: Opens a saved *.mot (Motor Settings) file.
- > Save: Saves the current motor settings as a *.mot file for later re-use
- > Save As
- > Exit Disconnects from the device and opens the Initialization Dialog.

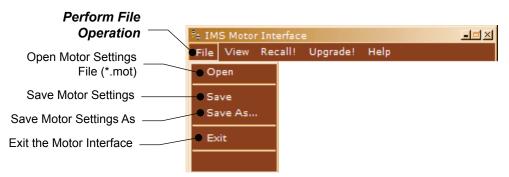


Figure 2.6.2: SPI Motor Interface File Menu

View

- > Motion Settings: Displays the Motion Settings screen
- > IO Settings: Displays the IO Settings Screen
- > Part and Serial Number: Displays the part and serial number

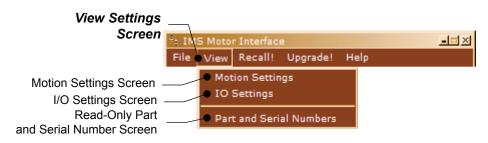


Figure 2.6.3: SPI Motor Interface View Menu

Recall!

Retrieves the settings from the Microstepping MForce PowerDrive.



Figure 2.6.4: SPI Motor Interface Recall Menu

Upgrade!

Upgrades the Microstepping MForce PowerDrive firmware by placing the device in Upgrade Mode and launching the firmware upgrader utility.

Figure 2.6.5: SPI Motor Interface Upgrade Menu

Help

- > IMS Internet Tutorials: Link to an IMS Web Site page containing Interactive flash tutorials.
- > About: Opens the About IMS and IMS SPI Motor Interface Screen.

Links to the Software Tutorial page of the IMS Website	⁹ t IMS Motor Interface File View Recall! Upgrade	IIIX			
	Motor Interface (v9.0.08	M 🚽 IMS Internet Tutorials			
	MSEL: 256 - MRC				
	HCDT: 500 ms MHC				
	User ID:	Fault: None			
	Factory	Exit			
[₽] a About IMS SPI Interface	<u>×</u>				
IMS SPI Interface Version 903.1.14					
Utillity to setup IMS's Speer Products	d Control and MDrive				
Copyright® 2000-2006 by: Intelligent Motion Systems, Inc. 370 North Main Street Marlborough, CT 06447 web: imshome.com email: info@imshome.com					

Figure 2.6.6: SPI Motor Interface Help Menu and About Screen

1. MSEL: Microstep Resolution Select.

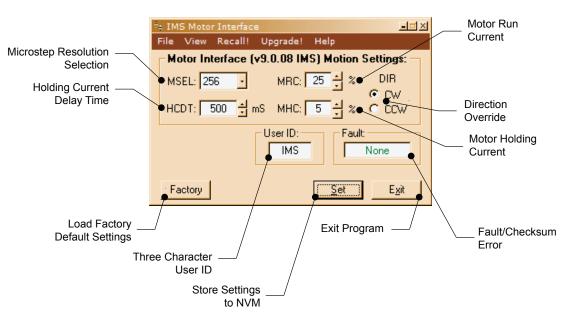


Figure 2.6.7: SPI Motor Interface Motion Settings Screen

- 2. HCDT: Holding Current Delay Time.
- 3. MRC: Motor Run Current
- 4. Motor Holding Current
- 5. User ID: 3-character ID
- 6. Direction Override: Allows the user to set the CW/CCW direction of the motor in relation to the Direction Input from the SPI Motor Interface.

MSEL (Microstep Resolution Selection)

The Microstepping MForce PowerDrive features 20 microstep resolutions. This setting specifies the number of microsteps per step the motor will move.

The MForce PowerDrive uses a 200 step (1.8°) stepping motor which at the highest (default) resolution of 256 will yield 51,200 steps per revolution of the motor shaft.

See Table 2.3.2 for available Microstep Resolutions.

Microstep Resolution Settings			
Binary µSt	ep Resolution Settings	Decimal µStep Resolution Settings	
MS=<µSteps/Step>	Steps/Revolution	MS=<µSteps/ Step>	Steps/Revolution
1	200	5	1000
2	400	10	2000
4	800	25	5000
8	1600	50	10000
16	3200	100	20000
32	6400	125	25000
64	12800	200	40000
128	25600	250	50000
256	51200		
Additiona	al Resolution Settings	1	
180	36000 (0.01°/µStep)		
108	21600 (1 Arc Minute/µStep)		
127	25400 (0.001 mm/µStep)		

Table 2.6.2: Microstep Resolution Settings

HCDT (Hold Current Delay Time)

The HCDT Motor Hold Current Delay sets time in milliseconds for the Run Current to switch to Hold Current when motion is complete. When motion is complete, the Microstepping MForce PowerDrive will reduce the current in the windings of the motor to the percentage specified by MHC when the specified time elapses.

MRC (Motor Run Current)

The MRC Motor Run Current parameter sets the motor run current to a percentage of the full output current of the MForce PowerDrive driver section.

MHC (Motor Hold Current)

The MHC parameter sets the motor holding current as a percentage of the full output current of the driver. If the hold current is set to 0, the output circuitry of the driver section will disable when the hold current setting becomes active. The hold current setting becomes active HCDT setting mS following the last clock pulse.

Run and Hold Current Settings			
HC=(%) RC=(%)	MForce PowerDrive (Amps RMS)		
10	0.5		
20	1.0		
30	1.5		
40	2.0		
50	2.5		
60	3.0		
70	3.5		
80	4.0		
90	4.5		
100	5.0		

Table 2.6.3: Hold and Run Current Percentage Equivalents

DIR (Motor Direction)

The DIR Motor Direction parameter changes the motor direction relative to the direction input signal, adapting the direction of the MForce PowerDrive to operate as your system expects.

User ID

The User ID is a three character (viewable ASCII) identifier which can be assigned by the user. Default is IMS.

IMS SPI Motor Interface Button Functions

The following appear on all of the IMS SPI Motor Interface screens, but will only be documented here.

Factory

Clicking the Factory button will load the Microstepping MForce PowerDrive unit's factory default settings into the IMS SPI Motor Interface.

Connected/Disconnected Indicator

Displays the connected/disconnected state of the software , and if connected, the port connected on.

Set

Set writes the new settings to the MForce PowerDrive . Un-set settings will display as blue text in the setting fields. Once set they will be in black text. Setting the Parameters will also clear most Fault Conditions.

Exit

Disconnects and opens the Initialization dialog.

Screen 2: I/O Settings Configuration Screen

The I/O Settings screen may be accessed by clicking View > IO Settings on the menu bar. This screen is used to configure the Input Clock type, the filtering and the Active High/Low State of the Enable Input.

Input Clock Type

The Input Clock Type translates the specified pulse source that the motor will use as a reference for establishing stepping resolution based on the frequency.

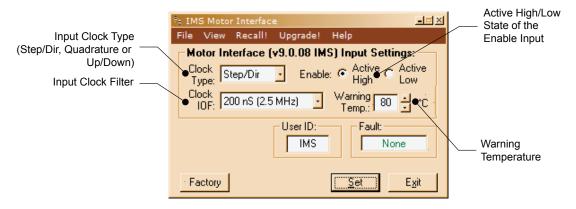


Figure 2.6.8: SPI Motor Interface I/O Settings Screen

The three clock types supported are:

- 1. Step/Direction
- 2. Quadrature
- 3. Up/Down

The Clock types are covered in detail in Section 2.2: Logic Interface and Connection.

Input Clock Filter

The clock inputs may also be filtered using the Clock IOF pull down of the IMS SPI Motor Interface. The filter range is from 50 nS (10 MHz) to 12.9 μ Sec. (38.8 kHz). Table 2.4.3 shows the filter settings.

Input Cloc	Input Clock Filter Settings			
Min. Pulse	Cutoff Frequency			
50 nS	10 MHz			
150 nS	3.3 MHz			
200 nS	2.5 MHz			
300 nS	1.67 MHz			
500 nS	1.0 MHz			
900 nS	555 kHz			
1.7 μS	294.1 kHz			
3.3 μS	151 kHz			
6.5 μS	76.9 kHz			
12.9 μS	38.8 kHz			

Table 2.6.4: Input Clock Filter Settings

Enable Active High/Low

The parameter sets the Enable Input to be Active when High (Default, Disconnected) or Active when Low.

Warning Temperature

The parameter sets the temperature at which a TW, or temperature warning fault code will be generated. In the warning condition the MForce PowerDrive will continue to operate as normal. The thermal shutdown is +85°C.

IMS Part Number/Serial Number Screen

The IMS Part Number and Serial Number screen is accessed by clicking "View > Part and Serial Numbers".

This screen is read-only and will display the part and serial number, as well as the fault code if existing. IMS may require this information if calling the factory for support.

	e IMS Motor Interface	- - ×
	File View Recall! Upgrade! Help	
IMS Part # —	Motor Interface (v9.0.08 IMS) PN and SN: -	
IMS Serial Number	Part Number:	
	Serial Number:	
	Fault:	
	Factory Set E	<u>s</u> it

Figure 2.6.9: SPI Motor Interface Part and Serial Number Screen

Fault Indication

All of the IMS SPI Motor Interface Screens have the Fault field visible. This read-only field will display a 2 character error code to indicate the type of fault. The table below shows the error codes.

	MForce34Plus Microstepping Fault Codes				
Binary Case*	Error Code	Description	Action	To Clear	
—	None	No Fault	—	—	
4	CS	SPI Checksum Error	Error Displayed	Write to MDM (Set Button)	
8	SC/CS	SPI Checksum Error/ Sector Changing	Error Displayed	Write to MDM (Set Button)	
16	DFLT	Defaults Checksum Error	Error Displayed	Write to MDM (Set Button)	
32	DATA	Settings Checksum Error	Error Displayed	Write to MDM (Set Button)	
64	TW	Temperature Warning	Error Displayed	Write to MDM (Set Button)	

*All Fault Codes are OR'ed together

Table 2.6.5: Microstepping MForce PowerDrive Fault Codes

Upgrading the Firmware in the Microstepping MForce PowerDrive

The IMS SPI Upgrader Screen

New firmware releases are posted to the IMS web site at http://www.imshome.com.

The IMS SPI Motor Interface is required to upgrade your Microstepping MForce PowerDrive product. To launch the Upgrader, click "Upgrade!" on the IMS SPI Motor Interface menu.

The Upgrader screen has 4 read-only text fields that will display the necessary info about your Microstepping MForce PowerDrive.

* IMS SPI Upgrader	
Previous Version:	Upgrade Version:
Serial Number:	
Messages:	
Welcome to the: Unknown UPGRADER Press NEXT to Continue	
<u> </u>	Next Cancel
L	Next Cancel

Figure 2.6.10: SPI Motor Interface Upgrade Utility

- 1. Previous Version: this is the version of the firmware currently on your Microstepping MForce PowerDrive.
- 2. Serial Number: the serial number of your unit.
- 3. Upgrade Version: will display the version number of the firmware being installed.
- 4. Messages: the messages text area will display step by step instructions through the upgrade process.

Upgrade Instructions

Below are listed the upgrade instructions as they will appear in the message box of the IMS SPI Upgrader. Note that some steps are not shown as they are accomplished internally, or are not relevant to the model IMS product you are updating. The only steps shown are those requiring user action.

Welcome Message: Welcome to the Motor Interface UPGRADER! Click NEXT to continue.

Step 2: Select Upgrade File

When this loads, an explorer dialog will open asking you to browse for the firmware upgrade file. This file will have the extension *.ims.

Step 3: Connect SPI Cable Step 4: Power up or Cycle Power to the MForce Step 6: Press Upgrade Button

Progress bar will show upgrade progress in blue, Message box will read "Resetting Motor Interface"

Step 8: Press DONE, then select Port/Reconnect.

Initialization Screen

This screen will be active under five conditions:

- 1. When the program initially starts up and seeks for a compatible device.
- 2. The User selects File > Exit when connected to the device.
- 3. The User clicks the Exit button while connected to the device.
- 4. The Upgrade Process completes.
- 5. The SPI Motor Interface is unable to connect to a compatible device.

te IMS SPI Interface	
File Port Help	
Establishing Connection:	
Last Connected:	
MOTOR INTERFACE	
le la	Exit

Figure 2.6.11: SPI Motor Interface Initialization

Port Menu

The Port Menu allows the user to select the COM Port that the device is connected to, either a parallel (LPT) Port, or a Hardware Serial or Virtual Serial Port via USB.

The Reconnect option allows the user to reconnect to a unit using the previously used settings.

On open or reconnect, the SPI Motor Interface will also try to auto seek for a connected device.

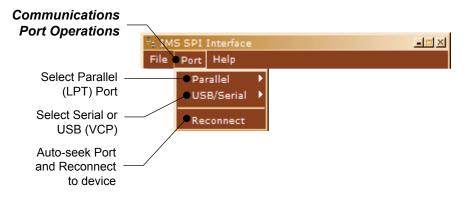


Figure 2.6.12: SPI Motor Interface Port Menu

Motor Settings Screen (PWM Current Control)

The Motor settings screen allows the user to fine tune the settings of the PWM to optimize the current output for a variety of stepping motors.

There are four parameters that may be set:

- 1. PWM Mask
- 2. PWM Period (Duty Cycle)
- 3. PWM Frequency Range
- 4. PWM Control

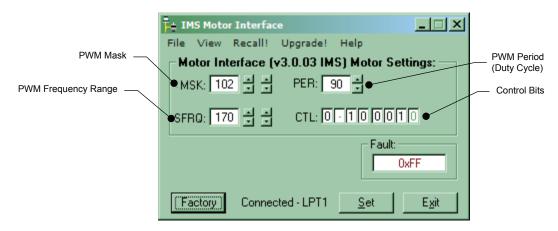


Figure 2.6.13: Motor Settings Screen

PWM Mask

The PWM mask parameter prevents the premature end of the forward period caused by switching transients when the motor phase current is at low levels. Adjusting this value can impact the zero-crossing performance of the motor. If experiencing the "tick" which is inherit in stepper motor systems, this may be minimized or eliminated by adjusting this value. The range of this value is 0 to 255d and will be entered as a decimal value.

The Mask will act as a filter on the PWM signal to allow time for any ringing in the output circuitry to settle.

This range represents a 8-bit Hex value that specifies the Bridge Reverse Measure Time (REVTM) and the Minimum Bridge Forward On Time (FORTM) ranging from 600 nS to $3.4 \,\mu$ S each (see table and diagram below). Typically these values would be balanced. The table below shows the decimal value for each time.

Note that these are typical values and the currents may be unbalanced to fine tune the motor performance.

The default value for this parameter is 204 (0xCC), which represents a Reverse Measure Time and Minimum Forward On Time of $2.5 \ \mu$ S.

	Reverse Measure Time/Minimum Forward On Time									
Hex	Time		Hex	Time		Hex	Time		Hex	Time
0x0	600 ns		0x4	1.0 µs		0x8	1.6 µs		0xC	2.5 µs
0x1	700 ns		0x5	1.1 µs		0x9	1.8 µs		0xD	2.8 µs
0x2	800 ns		0x6	1.2 µs		0xA	2.0 µs		0xE	3.1 µs
0x3	900 ns		0x7	1.4 µs		0xB	2.2 µs		0xF	3.4 µs

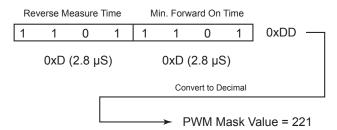


Figure 2.6.14: PWM Mask Bits

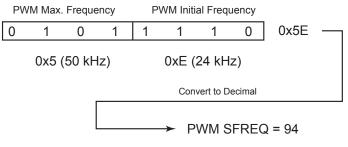
	Typical PWM Mask Settings (Currents Balanced)										
Mask (hex)	Mask (dec)	REVTM	FORTM		Mask (hex)	Mask (dec)	REVTM	FORTM			
0x00	0	600 ns	600 ns		0x88	135	1.6 µs	1.6 µs			
0x11	17	700 ns	700 ns		0x99	153	1.8 µs	1.8 µs			
0x22	34	800 ns	800 ns		0xAA	170	2.0 µs	2.0 µs			
0x33	51	900 ns	900 ns		0xBB	187	2.2 µs	2.2 µs			
0x44	68	1.0 µs	1.0 µs		0xCC	204	2.5 µs	2.5 µs			
0x55	85	1.1 µs	1.1 µs		0xDD	221	2.8 µs	2.8 µs			
0x66	102	1.2 µs	1.2 µs		0xEE	238	3.1 µs	3.1 µs			
0x77	119	1.4 µs	1.4 µs		0xFF	255	3.4 µs	3.4 µs			

Table 2.6.7: Typical PWM Mask Settings

Maximum PWM Duty Cycle (%) Parameter

This parameter sets the maximum duty cycle as a percentage of the bridge PWM oscillator period. The range for this parameter is 0 to 95%. The default value for this parameter is 95%.

PWM Frequency Range Parameter


The PWM Frequency Parameter sets the initial and maximum frequencies for the PWM. As with the MASK parameter, the PWM Frequency is a two part 8-bit hex number which is entered as a decimal value ranging from 0 to 255.

The default for this 170 (0xAA) with an initial PWM Frequency of 20 kHz and a Maximum of 60 kHz.

	Maximum PWM Frequency (kHz)									
Hex	Freq.		Hex	Freq		Hex	Freq		Hex	Freq
0x0	40		0x4	48		0x8	56		0xC	64
0x1	42		0x5	50		0x9	58		0xD	66
0x2	44		0x6	52		0xA	60		0xE	68
0x3	46		0x7	54		0xB	62		0xF	70

	Initial PWM Frequency (kHz)									
Hex	Freq.		Hex	Freq		Hex	Freq		Hex	Freq
0x0	10		0x4	14		0x8	18		0xC	22
0x1	11		0x5	15		0x9	19]	0xD	23
0x2	12		0x6	16		0xA	20		0xE	24
0x3	13		0x7	17		0xB	21		0xF	25

Table 2.6.8: Maximum and Initial PWM Frequency

PWM Frequency Range 24 to 50 kHz

Figure 2.6.15: PWM Frequency Range

PWM Control Bits

Bit	7	6	5	4	3	2	1	0	
0x0203	QUIET	_	SYNC_EN	RECIR		TODLY[2:0]		ENABLE	PWMCT
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	1	0	0	0	1	0	

Figure 2.6.16: PWM Control Bits

Bit 7 – QUIET

This bit changes PWM operation. When quiet is set, the bridge logic does not enter the reverse measure period, therefore there are fewer transitions. The bridge is disabled during zero cross. This mode is used at rest or when moving very slowly. When quiet is cleared, normal bridge operation is selected.

Bit 6 – Not used

■ Bit 5 – SYNC_EN

This bit controls the synchronization of the bridge PWM with the zero cross. When the sync_en bit is set, the bridge PWM will be synchronized with the positive front slope of the sin phase at each zero cross.

Bit 4 – RECIR

This bit controls where the motor current will recirculate within the bridge during the recirculate period. When recirc is set, the motor current will recirculate in the high portion of the bridge. When recir is cleared, the motor current will recirculate in the low portion of the bridge.

Bits 3..1 – TODLY - Turn on Delay

This value sets the bridge control turn on delay to prevent shoot through if a discrete FET bridge is in use. The range is 0 to 350 nS with 50 nS resolution. Each LSB is 50 nS. The default setting for a bridge driver is 50 nS (0x1).

Bit 0 – ENABLE

Bridge Enable, this bit is set at the factory and is inaccessible to the user.

Example PWM Settings By Motor Specifications

The following settings are based upon IMS settings per motor specifications and should serve as a baseline to work from with regard to the manufacturer specifications of the motor being utilized. Note that these are example settings ONLY!

				Example P	W Settings			
Frame Size	Stack Size	Phase Current (A _{RMS})	$\begin{array}{c} \text{Phase} \\ \text{Resistance} \\ (\Omega) \end{array}$	Phase Inductance (mH)	MASK <mask></mask>	Duty Cycle <period></period>	Frequency <sfreq></sfreq>	Checksum <chksum></chksum>
14	Single	0.75	4.30	4	102	90	170	106
	Single	1.5	1.30	2.1	136	90	170	140
17	Double	1.5	2.10	5.0	136	90	170	140
	Triple	1.5	2.00	3.85	136	90	170	140
	Single	2.4	0.95	2.4	136	90	170	140
23	Double	2.4	1.20	4.0	136	90	170	140
	Triple	2.4	1.50	5.4	136	90	170	140
MForce	e Default	_	—	—	204	95	170	—

Table 2.6.9: Example PWM Settings

Using User-Defined SPI

The MForce can be configured and operated through the end-user's SPI interface without using the IMS SPI Motor Interface software and optional parameter setup cable.

An example of when this might be used is in cases where the machine design requires parameter settings to be changed on-the-fly by a software program or multiple system Microstepping MForce PowerDrive units parameter states being written/read.

SPI Timing Notes

- 1. MSb (Most Significant bit) first and MSB (Most Significant Byte) first.
- 2. 8 bit bytes.
- 3. 25 kHz SPI Clock (SCK).
- 4. Data In (MOSI) on rising clock.
- 5. Data Out (MISO) on falling clock.

READ ALL

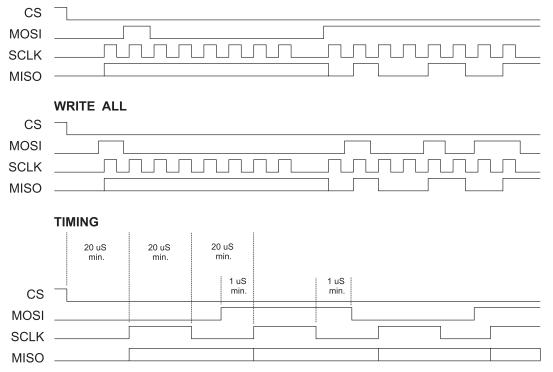


Figure 2.7.1: SPI Timing

Check Sum Calculation for SPI

The values in the example below are 8-bit binary hexadecimal conversions for the following SPI parameters: MRC=25%, MHC=5%, MSEL=256, HCDT=500 mSec, WARNTEMP=80.

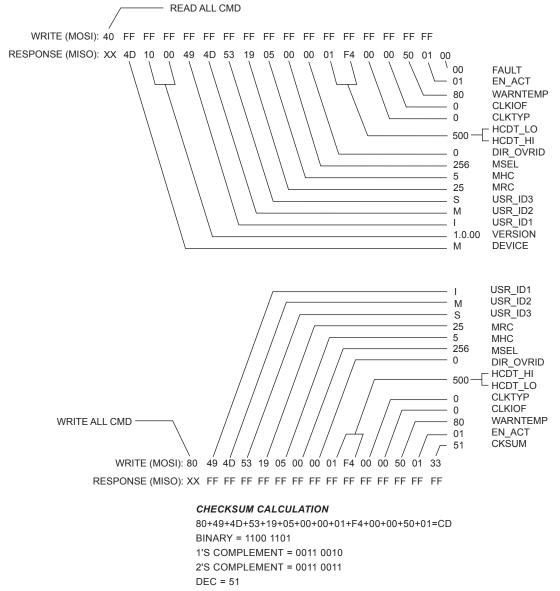
The Check Sum is calculated as follows:

(Hex) 80+19+05+00+00+01+F4+50

Sum = E3	1110 0011
1's complement = 1C	0001 1100 (Invert)
2's complement = $1D$	0001 1101 (Add 1)

Send the check sum value of 1D

Note: 80 is always the first command on a write.


Note: Once a write is performed, a read needs to be performed to see if there is a fault. The fault is the last byte of the read.

SPI Commands and Parameters

Use the following table and figure found on the following page together as the Byte order read and written from the MDrivePlus Microstepping, as well as the checksum at the end of a WRITE is critical.

		SPI Comma	inds and Parame	ters
	Command/ Parameter	HEX (Default)	Range	Notes
	READ ALL	0x40	_	Reads the hex value of all parameters
MSB	Device (M)	0x4D	—	M Character precedes every READ
	Version_MSB	0x10	<1-8>.<0-9>	Firmware Version.Sub-version, eg 1.0
	Version_LSB	0x00	<0-99>	Firmware Version Appends to Version_ MSB, eg.00
	USR_ID1	0x49	—	Uppercase Letter <i></i>
	USR_ID2	0x4D	—	Uppercase Letter <m></m>
	USR_ID3	0x53	—	Uppercase Letter <s></s>
	MRC	0x19	1-67%	Motor Run Current
	MHC	0x05	0-67%	Motor Hold Current
	MSEL	0x00	0*, 1-259 *0=256	Microstep Resolution (See Table in Section 2.4 for settings)
	DIR_OVRID	0x00	0=no override 1=override dir	Direction Override
	HCDT_HI	0x01	0 or 2-65535	Hold Current Delay Time High Byte
	HCDT_LO	0xF4	0 01 2-05555	Hold Current Delay Time Low Byte
	CLKTYP	0x00	0=s/d, 1=quad, 2=u/d	Input Clock Type
	CLKIOF	0x00	<0-9>	Clock Input Filtering
	WARNTEMP	0x50		OVER_TEMP - 5° C
	EN_ACT	0x01	0=Low 1=High,	Enable Active High/Low
LSB	FAULT	0x00	—	See Fault Table, Section 2.4
	WRITE ALL	0x80	—	Writes the hex value to the following parameters.
MSB	USR_ID1	0x49	—	Uppercase Letter <i></i>
	USR_ID2	0x4D	—	Uppercase Letter <m></m>
	USR_ID3	0x53	—	Uppercase Letter <s></s>
	MRC	0x19	1-100%	Motor Run Current
	MHC	0x05	0-100%	Motor Hold Current
	MSEL	0x00	0*, 1-259 *0=256	Microstep Resolution (See Table in Section 2.4 for settings)
	DIR_OVRID	0x00	0=no override 1=override dir	Direction Override
	HCDT_HI	0x01	0 or 2-65535	Hold Current Delay Time High Byte
	HCDT_LO	0xF4	0 01 2-00005	Hold Current Delay Time Low Byte
	CLKTYP	0x00	0=s/d, 1=quad, 2=u/d	Input Clock Type
	CLKIOF	0x00	<0-9>	Clock Input Filtering
	WARNTEMP	0x50		OVER_TEMP - 5° C
	EN_ACT	0x01	0=Low 1=High	Enable Active High/Low
LSB	CKSUM	1	1	34

Table 2.7.1: SPI Commands and Parameters

HEX = 33

Figure 2.7.2: Read/Write Byte Order for Parameter Settings (Default Parameters Shown)

SPI Communications Sequence

See Timing Diagram and Byte Order figures.

READ

1. Send READ ALL Command 0x40 down MOSI to Microstepping MForce PowerDrive followed by FF (15 Bytes).

2. Receive Parameter settings from MISO MSB First (M-Device) and ending with LSB (Fault).

Write

1. Send WRITE ALL Command (0x80) down MOSI followed by Parameter Bytes beginning with MSB (MRC) and ending with the LSB (Checksum of all parameter Bytes).

2. Response from MISO will be FF (10) Bytes.

Page Intentionally Left Blank

Appendix A: Optional Prototype Development Cables

Page Intentionally Left Blank

APPENDIX C

Optional Prototype Development Cables

MD-CC300-000: USB to SPI Parameter Setup Cable

The MD-CC300-000 USB to SPI Parameter Setup Cable provides a communication connection between the 10-pin connector on some Microstepping MForce PowerDrives and the USB port on a PC.

IMS SPI Interface Software communicates to the Parameter Setup Cable through the PC's USB port.

The Parameter Setup Cable interprets SPI commands and sends these commands to the MForce PowerDrive through the SPI interface.

Figure A.1: MD-CC300-000

Supplied Components: MD-CC300-000 Parameter Setup Cable, USB Cable, USB Drivers, IMS SPI Interface Software.

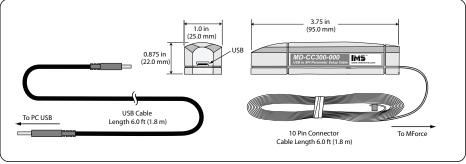


Figure A.2: MD-CC300-000 Mechanical Specifications

Adapter Cables

Parameter Setup Cable and Adapters

The optional 12.0' (3.6m) parameter setup cable part number MD-CC300-000 facilitates communications wiring and is recommended with first order. It connects from the P2 connector to a PC's USB port. Models with the 12-pin pluggable locking wire crimp require adapter MD-ADP-1723C.

Prototype Development Cable

For testing and development using the 12-pin pluggable locking wire crimp, the 12.0" (30.5cm) prototype development cable plugs into the MD-ADP-1723C adapter and has flying leads for connection to the user interface. Part number ADP-3512-FL.

See Figure A.3 on the following page for dimensional and connection information.

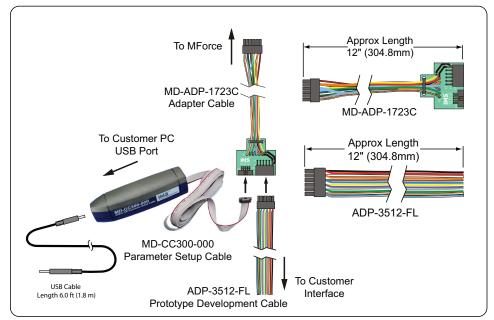


Figure A.3: Typical Setup, Adapter and Prototype Development Cable

Installation Procedure for the MD-CC300-000

These Installation procedures are written for Microsoft Windows XP Service Pack 2. Users with earlier versions of Windows please see the alternate installation instructions at the IMS web site (http://www.imshome.com).

The installation of the MD-CC300-000 requires the installation of two sets of drivers:

- Drivers for the IMS USB to SPI Converter Hardware.
- Drivers for the Virtual Communications Port (VCP) used to communicate to your IMS Product.

Therefore the Hardware Update wizard will run twice during the installation process.

The full installation procedure will be a two-part process: Installing the Cable/VCP drivers and Determining the Virtual COM Port used.

Installing the Cable/VCP Drivers

- 1) Plug the USB Converter Cable into the USB port of the MD-CC300-000.
- 2) Plug the other end of the USB cable into an open USB port on your PC.
- 3) Your PC will recognize the new hardware and open the Hardware Update dialog.
- Select "No, not this time" on the radio buttons in answer to the query "Can Windows Connect to Windows Update to search for software?" Click "Next" (Figure A.4).
- Select "Install from a list or specific location (Advanced)" on the radio buttons in answer to the query "What do you want the wizard to do?" Click "Next" (Figure A.5).

Figure A.4: Hardware Update Wizard

6) Select "Search for the best driver in these locations".(a) Check "Include this location in the search".

Figure A.5: Hardware Update Wizard Screen 2

- (b) Browse to the CD [Drive Letter]:\ Cable_Drivers\MD-CC303-000_DRIVERS.(c) Click Next (Figure A.6).
- 7) The drivers will begin to copy.

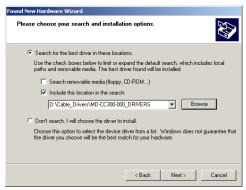


Figure A.6: Hardware Update Wizard Screen 3

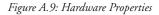
8) On the Dialog for Windows Logo Compatibility Testing, click "Continue Anyway" (Figure A.7).

Figure A.7: Windows Logo Compatibility Testing

- 9) The Driver Installation will proceed. When the Completing the Found New Hardware Wizard dialog appears, Click "Finish" (Figure A.8).
- 10) Upon finish, the Welcome to the Hardware Update Wizard will reappear to guide you through the second part of the install process. Repeat steps 1 through 9 above to complete the cable installation.
- 11) Your IMS MD-CC300-000 is now ready to use.

Figure A.8: Hardware Update Wizard Finish Installation

Determining the Virtual COM Port (VCP)


The MD-CC300-000 uses a Virtual COM Port to communicate through the USB port to the MForce. A VCP is a software driven serial port which emulates a hardware port in Windows.

The drivers for the MD-CC300-000 will automatically assign a VCP to the device during installation. The VCP port number will be needed when IMS Terminal is set up in order that IMS Terminal will know where to find and communicate with your IMS Product.

To locate the Virtual COM Port.

- 1) Right-Click the "My Computer" Icon and select "Properties".
- 2) Browse to the Hardware Tab (Figure A.9), Click the Button labeled "Device Manager".
- 3) Look in the heading "Ports (COM & LPT)" IMS USB to SPI Converter Cable (COMx) will be listed (Figure A.10). The COM # will be the Virtual COM Port connected. You will enter this number into your IMS SPI Motor Interface Configuration.

System	Restore	Automa	itic Updates	Remote				
General	Com	puter Name	Hardware	Advance				
Device N	lanager							
Ż		puter. Üse the D	the hardware device evice Manager to ch					
			Device Ma	anager				
Drivers								
	Driver Signing lets you make sure that installed drivers are compatible with Windows. Windows Update lets you set up how Windows connects to Windows Update for drivers.							
	Driver	r Signing	Windows U	pdate				
Hardwar	e Profiles							
R		ofiles provide a v Iware configurati	vay for you to set up ions.	and store				
			Hardware F	Profiles				

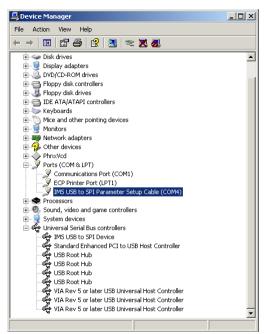
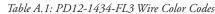



Figure A.10: Windows Device Manager

PD12-1434-FL3 — Power, I/O and SPI

The PD12-1434-FL3 is a 10' (3.0 m) Prototype Development Cable used to connect to the 12-Pin Locking Wire Crimp Connector. The Connector end plugs into the P1 Connector of the MForce PowerDrive. The Flying Lead end connects to a Control Interface such as a PLC, an SPI Interface such as a PC Parallel port and the users motor power supply.

	Wire Color Code		
Pair Number (Cable/Pair)	Color Combination	Interface Signal	MForce Wire Crimp Connection Pin Number
1/1	White/Blue	Opto Reference	3
1/1	Blue/White	Step Clock	4
1/2 -	White/Orange	Enable	5
	Orange/White	Direction	6
1/3	White/Green	SPI Clock	8
1/3	Green/White	COMM GND	9
1/4	White/Brown	+5VDC	7
1/4	Brown/White	Master In - Slave Out	12
1/5	White/Gray	Master Out - Slave In	10
1/5	Gray//White	SPI Chip Select	11
2/1	Black	Not Used	1
2/1	Red	Not Used	2

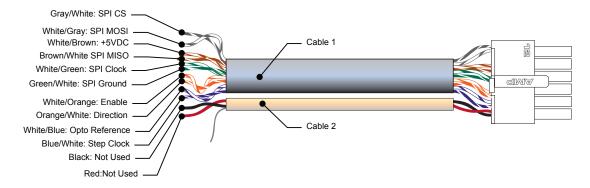
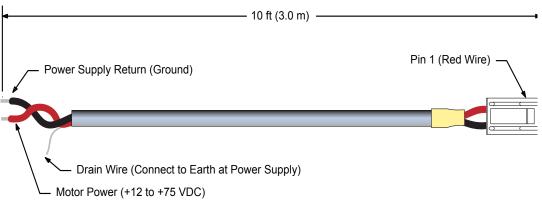
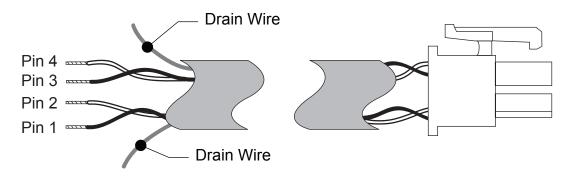


Figure A.11 PD12-1434-FL3

Prototype Development Cable PD02-2300-FL3

IMS recommends the Prototype Development Cable PD02-3400-FL3 for interfacing power to the MForce PowerDrive.




Figure A.12: PD02-3400-FL3

Prototype Development Cable PD04-MF34-FL3

The PD04-MF34FL3 is a 10' (3.0 M) Prototype Development Cable used to connect the MForce PowerDrive to a stepping motor:

Pair Number (Cable/Pair)	Color Combination	Interface Signal	MForce Wire Crimp Connection Pin Number
1/1	Black	Phase A	1
	White	Phase A	2
1/0	Black	Phase B	3
1/2	White	Phase B	4

Table A.2: PD04-MF34-FL3

General Specifications

Length: 10 Feet (3.0 Meters) Conductor: 16 AWG Twisted Pairs Shield: 100% Flexfoil Jacket: PVC

Figure A.13: PD04-MF34-FL3

WARRANTY

TWENTY-FOUR (24) MONTH LIMITED WARRANTY

Intelligent Motion Systems, Inc. ("IMS"), warrants only to the purchaser of the Product from IMS (the "Customer") that the product purchased from IMS (the "Product") will be free from defects in materials and workmanship under the normal use and service for which the Product was designed for a period of 24 months from the date of purchase of the Product by the Customer. Customer's exclusive remedy under this Limited Warranty shall be the repair or replacement, at Company's sole option, of the Product, or any part of the Product, determined by IMS to be defective. In order to exercise its warranty rights, Customer must notify Company in accordance with the instructions described under the heading "Obtaining Warranty Service."

This Limited Warranty does not extend to any Product damaged by reason of alteration, accident, abuse, neglect or misuse or improper or inadequate handling; improper or inadequate wiring utilized or installed in connection with the Product; installation, operation or use of the Product not made in strict accordance with the specifications and written instructions provided by IMS; use of the Product for any purpose other than those for which it was designed; ordinary wear and tear; disasters or Acts of God; unauthorized attachments, alterations or modifications to the Product; the misuse or failure of any item or equipment connected to the Product not supplied by IMS; improper maintenance or repair of the Product; or any other reason or event not caused by IMS.

IMS HEREBY DISCLAIMS ALL OTHER WARRANTIES, WHETHER WRITTEN OR ORAL, EXPRESS OR IMPLIED BY LAW OR OTHERWISE, INCLUDING WITHOUT LIMITATION, **ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE**. CUSTOMER'S SOLE REMEDY FOR ANY DEFECTIVE PRODUCT WILL BE AS STATED ABOVE, AND IN NO EVENT WILL THE IMS BE LIABLE FOR INCIDENTAL, CONSEQUENTIAL, SPECIAL OR INDIRECT DAMAGES IN CONNECTION WITH THE PRODUCT.

This Limited Warranty shall be void if the Customer fails to comply with all of the terms set forth in this Limited Warranty. This Limited Warranty is the sole warranty offered by IMS with respect to the Product. IMS does not assume any other liability in connection with the sale of the Product. No representative of IMS is authorized to extend this Limited Warranty or to change it in any manner whatsoever. No warranty applies to any party other than the original Customer.

IMS and its directors, officers, employees, subsidiaries and affiliates shall not be liable for any damages arising from any loss of equipment, loss or distortion of data, loss of time, loss or destruction of software or other property, loss of production or profits, overhead costs, claims of third parties, labor or materials, penalties or liquidated damages or punitive damages, whatsoever, whether based upon breach of warranty, breach of contract, negligence, strict liability or any other legal theory, or other losses or expenses incurred by the Customer or any third party.

OBTAINING WARRANTY SERVICE

Warranty service may obtained by a distributor, if the Product was purchased from IMS by a distributor, or by the Customer directly from IMS, if the Product was purchased directly from IMS. Prior to returning the Product for service, a Returned Material Authorization (RMA) number must be obtained. Complete the form at http://www.imshome.com/rma.html after which an RMA Authorization Form with RMA number will then be faxed to you. Any questions, contact IMS Customer Service (860) 295-6102.

Include a copy of the RMA Authorization Form, contact name and address, and any additional notes regarding the Product failure with shipment. Return Product in its original packaging, or packaged so it is protected against electrostatic discharge or physical damage in transit. The RMA number MUST appear on the box or packing slip. Send Product to: Intelligent Motion Systems, Inc., 370 N. Main Street, Marlborough, CT 06447.

Customer shall prepay shipping changes for Products returned to IMS for warranty service and IMS shall pay for return of Products to Customer by ground transportation. However, Customer shall pay all shipping charges, duties and taxes for Products returned to IMS from outside the United States.

INTELLIGENT MOTION SYSTEMS, INC.

www.imshome.com

370 N. Main St., P.O. Box 457 Marlborough, CT 06447 U.S.A. Phone: 860/295-6102 Fax: 860/295-6107 E-mail: info@imshome.com

TECHNICAL SUPPORT (U.S.A.) Phone: 860/295-6102 Fax: 860/295-6107 E-mail: etech@imshome.com

IMS ASIA PACIFIC OFFICE 30 Raffles PI., 23-00 Caltex House Singapore 048622 Phone: +65/6233/6846 Fax: +65/6233/5044 E-mail: wilee@imshome.com

IMS EUROPEAN SALES MGT.

4 Quai Des Etroits 69005 Lyon, France Phone: +33/4 7256 5113 Fax: +33/4 7838 1537 E-mail: bmartinez@imshome.com

IMS UK Ltd.

25 Barnes Wallis Road Segensworth East Fareham, Hampshire P015 5TT Phone: +44/0 1489-889825 Fax: +44/0 1489-889857 E-mail: mcheckley@imshome.com

Excellence in Motion"

U.S.A. SALES OFFICES

Eastern Region Phone: 973/661-1270 Fax: 973/661-1275 E-mail: jroake@imshome.com

Central Region

Phone: 260/402-6016 Fax: 419/858-0375 E-mail: dwaksman@imshome.com

Western Region Phone: 602/578-7201

Phone: 602/578-7201 E-mail: dweisenberger@imshome.com

© Intelligent Motion Systems, Inc. All Rights Reserved. REV032008 IMS Product Disclaimer and most recent product information at www.imshome.com.