
Investigating Exciton Correlations Using Coherent

Multidimensional Optical Spectroscopy

by

Daniel Burton Turner

B.A. Chemistry and B.A. Mathematics

Concordia College, 2004

Submitted to the Department of Chemistry

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

© Massachusetts Institute of Technology 2010. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Chemistry

May 6, 2010

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Keith A. Nelson

Professor of Chemistry

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Robert W. Field
Chairman, Department Committee on Graduate Students



2



This doctoral thesis has been examined by a committee of the Department of

Chemistry as follows:

Professor Moungi G. Bawendi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chairperson

Professor Keith A. Nelson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Thesis Supervisor

Professor Robert W. Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3



4



Investigating Exciton Correlations Using Coherent

Multidimensional Optical Spectroscopy

by

Daniel Burton Turner

Submitted to the Department of Chemistry
on May 6, 2010, in partial fulfillment of the

requirements for the degree of
DOCTOR OF PHILOSOPHY

Abstract

The optical measurements described in this thesis reveal interactions among bound
electron-hole pairs known as excitons in a semiconductor nanostructure. Excitons
are quasiparticles that can form when light is absorbed by a semiconductor. Exciton
interactions gained prominence in the 1980s when unexpected signals were observed in
studies of carrier dynamics. The presence of exciton interactions in semiconductors
motivated an ongoing, focused research effort not only because the materials had
valuable commercial applications but also because the interactions could be used to
test fundamental theories of many-body physics.

Laser light provides a coherent electric field with a well defined phase. In linear
spectroscopy, an electric field that is resonant with an exciton transition will induce
coherent oscillations of electronic charge density. The charges will oscillate at the
transition frequency with a well defined phase, and these oscillations will radiate a
signal that has an amplitude proportional to the incident field amplitude and has the
same direction as the incident light. If the laser light is intense, its field may induce a
high density of excitons, and the field can interact with those excitons to induce tran-
sitions to higher-energy states composed of multiple interacting excitons. Many-body
interactions among the excitons can predictably modify—or unpredictably scramble—
the quantum phase of the exciton. The interactions can produce signals that have
amplitudes proportional to high powers of the incident field amplitude, and the sig-
nal fields often propagate in directions different than the incident field. The signal
fields contain information—often encoded in their phases—that can reveal the na-
ture of the higher-energy states and the many-body interactions that produced them.
Thus, many-body interaction studies rely on measurements of exciton phases that
are reflected in the optical phases of coherent signals. These measurements require a
tool that can detect optical coherence before the exciton phases are scrambled by the
environment. Coherent ultrafast optical spectroscopy is that tool.

The spectra displayed in this work were measured by an experimental apparatus
that separates the electric fields as needed into different laser beams with controllable
directions; it controls the optical phase, arrival time, and polarization of the femtosec-
ond light pulse(s) in each of those beams; it then recombines all of the beams at the
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sample to generate the signal field; and finally it measures the signal field, including its
phase. Using this instrument, we isolated—with a high degree of selectivity—signals
that arose from different numbers of field interactions and from different microscopic
origins using various beam geometries and pulse timing sequences.

In this thesis, we present electronic spectra measured at varying orders in the
electric field to isolate and measure the properties of excitons and their many-body
interactions. As the number of electric fields is increased and the resulting higher-
order signals are generated, interactions involving increasing numbers of particles
can be measured. The vast majority of previous work focused on the interactions
manifest in third-order signals. This thesis not only includes new insights gained
from third-order signals, but also includes new phenomena observed in fifth-order
and seventh-order signals. We measure signals due to four-particle correlations in the
form of bound biexcitons and unbound-but-correlated exciton pairs. We also measure
signals due to six-particle correlations in the form of bound triexcitons. Although we
searched for them, there were no signals due to eight-particle correlations, indicating
that the set of multiexciton states truncates. We thus measured the properties and
the extent of many-body interactions in this system.

The spectra presented here reveal a large set of excitonic many-body interactions
in GaAs quantum wells and answer questions about the many-body interactions posed
decades ago. The optical apparatus constructed to perform these measurements will
soon be used to measure correlations in a range of systems, including other semi-
conductors and their nanostructures, molecular aggregates, molecules, and photo-
synthetic complexes. Because future technologies such as entangled photon sources,
advanced photovoltaics, and quantum information processing will rely on these types
of materials and their many-body correlations, it is important to develop techniques
to measure their microscopic interactions directly.

Thesis Supervisor: Keith A. Nelson
Title: Professor of Chemistry
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Chapter 1

Introduction

I perceive the universe as a single equation, and it is so simple.

— The fictional character Lt. Reginald Barclay in the television series Star Trek:

The Next Generation episode “The Nth Degree”.

1.1 Many-body phenomena

The world in which we live is remarkably complex. Oftentimes, complexity results

when groups of objects interact through simple rules. For instance, a snowflake is a

collection of water molecules; each intermolecular interaction is a ‘simple’ hydrogen

bond, but the aggregate is beautiful1. Moreover, small changes to the initial con-

ditions or to the simple rules can cause strikingly different collective properties to

emerge. Carbon is one example. By changing the conditions under which carbon

atoms aggregate, materials with distinct properties can result: graphite, diamond,

and fullerenes. Other examples of complex many-body phenomena in physics include

planetary motion and Efimov trimers [1], and two examples from life science are

animal aggregation [2–4] and biological networking [5, 6]. Although the underlying

physical laws need not be simple, there are many systems for which the sum seems

to be greater than the parts.

But complexity—often in the form of coordinated motion—is a problem for the

physicist who desires a predictive scientific theory. Isaac Newton was among the first

to consider such problems in his Principia in the late 1600s. When attempting to

describe the trajectory of a collection of celestial bodies (N ≥ 3) mathematically,

1Some argue that what we perceive as complexity is merely the result of a change in scope:
Individual water molecules seem inconsequential when appreciating the complexities of a snowflake,
but individual snowflakes seem inconsequential when viewing a snowdrift.
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he discovered that although the individual trajectory of each planet or star could

be written in differential form using his laws of motion, the coupled, transcendental

nature of the set of equations made finding an algebraic solution difficult, and usu-

ally impossible. Solutions that could be found required approximations or numerical

integration techniques, and often the solution depended highly on the initial location

and initial velocity of each body.

Atomic physics, a field more closely related to the work of this thesis, provides

another classic example that illustrates how it is often difficult to predict coordinated

motion, even when the number of interacting particles is small. Although exact

algebraic expressions for hydrogen atom wavefunctions can be found, the electron-

electron repulsion term in the helium atom Hamiltonian prevents analytic solutions

to the Schrödinger equation. Approximations result in solutions, and the solutions

can then be compared to experiments.

This thesis describes experiments designed to measure the properties of collective

states that can result from interactions among excitons in a semiconductor nanos-

tructure. Just as water molecules can aggregate to form snowflakes—or as hydrogen

atoms can bind to form hydrogen molecules—excitons can aggregate to form more

complex objects such as biexcitons. Our experiments on GaAs quantum wells show

that excitons can interact in pairs to form either bound biexcitons or unbound two-

exciton complexes, that excitons can interact in triples to form bound triexcitons,

and that excitons cannot interact to a significant extent in quadruples. Each of these

many-body interactions is investigated in detail using coherent ultrafast spectroscopy

techniques. In this chapter, we describe the coherent spectroscopy of excitons quali-

tatively. The quantitative treatment follows in the remainder of the thesis.

1.2 Coherent fields and signals

We use ultrafast spectroscopy to observe exciton interactions by measuring how the

material responds to optical excitation in the form of femtosecond (10−15 second)

optical pulses. Similar to how high-speed cameras [7] and stroboscopes [8, 9] take

microsecond photographic ‘snapshots’ of ballistic projectile impacts, our device takes

femtosecond spectroscopic ‘snapshots’ of transient material dynamics. The two mea-

surements are thematic analogs only. In high-speed photography, the light reflects off

the projectile but does not perturb it significantly, whereas in nonlinear spectroscopy

the laser pulses interact with the sample. The electric fields provided by the pulses

interact with the electronic charge density in the sample to first induce and then

measure a material response.
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Figure 1-1: Wave interference. (a) Coherent waves of different frequencies are in-phase at
one point in time (red line). Constructive interference occurs at that point; at other times,
destructive interference diminishes the field. (b) Scattering events cause arbitrary phase
shifts and diminish the field.

Light waves are oscillating electromagnetic fields, and each spectrum displayed

in this thesis is the result of subtle changes in the electric component of those field

oscillations due to light-matter interactions. Many-body interactions can manifest

themselves in all wave parameters, including frequency, polarization, and amplitude,

but are especially evident in the phase of the wave. The phase of an oscillating wave

is that fraction of a full period which offsets the wave from its specified value at some

point, usually t = 0 [10]. Having a wave with a well defined phase shift—and almost

always that phase shift should be zero—is critical in time domain measurements. If

the phase fluctuates, information about the function is lost.

In physics, the adjective coherent means that the phase of a wave is well defined.

It can also mean that the phases of two or more waves are related in some unchanging

or controlled fashion. This term is most often used to describe the temporal nature

of a femtosecond pulse, but it can also describe other properties of the femtosecond

pulse such as spatial mode or polarization. If two laser beams form a stable interfer-

ence pattern when overlapped, they have a constant phase relationship and are thus

deemed coherent.

Coherence is especially important in ultrafast spectroscopy because the femtosec-

ond pulse itself requires many (∼ 106) frequencies that have a stable phase relationship

[11]. The relationship is such that each frequency has its maximum value at one point

in time2, for example t = 0, as illustrated in Fig. 1-1(a). At this point, the field is

2This is not to say that ultrafast measurements must be performed with femtosecond pulses.
Quasi-cw ‘noisy’ light spectroscopy [12–15] uses essentially incoherent nanosecond pulses but achieves
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enhanced because all of the frequencies constructively interfere, but at values away

from this point, destructive interference diminishes the field. Although the field is

diminished, the frequencies are still coherent because the phase relationship is main-

tained. Given a long enough time—the repetition rate of the laser—the frequencies

will once again constructively interfere and create another pulse3. This is one exam-

ple of a broader principle: coherent fields of different frequencies can destructively

interfere to decrease a signal. This effect appears in later chapters as inhomogeneous

broadening.

On the other hand, random dynamic interactions—scattering events—between

a wave and its environment introduce phase fluctuations that destroy the coherent

relationship, as illustrated in Fig. 1-1(b). It is not feasible to describe each scattering

event mathematically because we do not have complete information about all of the

time-dependent forces acting on the waves. Instead, we use a statistical description

of the scattering events in the form of a dephasing time. This is the characteristic

timescale describing the average duration of the coherence. Most of the signals in

this thesis were measured in the coherent regime as scattering events were in the

process of destroying the signal coherence to measure the duration of the many-body

interactions.

In our experiments, we excite the many-body interactions coherently using a series

of laser pulses and then ‘watch’, using other laser pulses, how quickly the excitations

lose their phase relationship. Most of the many-body interactions dephase within a

few picoseconds (10−12 seconds).

1.3 Excitons: quantum objects

In atoms, the electrons exist in localized atomic orbitals having discrete energy levels4.

In the tight-binding approach to conceptualizing a solid material such as a covalently

bonded semiconductor5, the atoms are arranged in a three-dimensional spatially pe-

riodic fashion and the outermost (valence) atomic orbitals overlap slightly [17]. The

electrons in the overlapping atomic orbitals are effectively shared throughout the lat-

tice in interatomic bonds where most of the electron density is found between adjacent

atomic nuclei [18–24]. In this manner, the overlapping atomic orbitals can be recast as

valence bands. In the free-electron approach, the Schrödinger equation can be solved

femtosecond resolution using noise correlations. This has been called ‘the ultimate poor man’s
femtosecond spectroscopy’, see Ch. 10 App. B in Ref. [16].

3More accurately, the time period between pulses is the inverse of the repetition rate.
4An electron in a valence orbital of a Ga atom fills a volume of ∼ 10−3 nm3.
5Although GaAs is a canonical example of a covalently bonded material, it is slightly ionic.
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using solutions based on Bloch waves with a phase that depends on the electron wave

vector [25]. In either approach, electron energies are no longer related to the quantum

numbers of the atomic orbitals but are instead related to the electron wave vector,

k, through the dispersion relation of the material, E(k). Fitting a dispersion curve

near the Γ-point (k = 0) results in a parabola with a characteristic curvature; this is

interpreted in terms of an effective mass. Effective mass is intimately connected to

spatial delocalization.

When a photon with enough energy is incident on the solid, it can excite an

electron from the valence band into the conduction band. This excitation changes

the spatial distribution of the electron. Both valence band and conduction band

electrons have probability densities with spatially extended envelopes6. In addition

to this envelope, the wavefunction of a valence band electron is strongly modulated by

the nuclei while the wavefunction of a conduction band electron is weakly modulated

by the nuclei. In the simplest picture of a conduction band electron, the wavefunction

is not modulated at all.

The excited electron leaves a vacancy in the valence band. This positive charge

has the same spatial distribution as a valence-band electron. This volume of excess

positive charge is called a hole. In many materials, the energetic electron in the

conduction band is attracted by the Coulomb force (also called electrostatic force) to

the hole. This attraction stabilizes the electron-hole pair, which is called an exciton.

The degree of stabilization is reflected in the value of the exciton binding energy.

The wavefunction of an exciton is similar to that of a hydrogen atom; both species

are the result of binding between one negative charge and one positive charge. The

similarities between excitons and hydrogen atoms have been explored in detail else-

where [26, 27]. Here it is sufficient to say that excitons are larger—in the sense

that the electron and hole constituents are delocalized—and significantly less tightly

bound than hydrogen atoms. Characteristic binding energies of several systems are

listed in Table 1.1. The dramatic differences between hydrogen atoms and excitons

in GaAs are due to screening by other charged particles in the semiconductor, and

the amount of screening is quantified by the dielectric constant of the material.

Excitons are found in many systems. These charge-neutral microscopic quasipar-

ticles are often used in transport applications, and they are usually placed into one

of two broad classes based on the size of the exciton and the strength of the binding

between the electron and the hole. Frenkel excitons are small, tightly bound excitons

usually observed in organic systems such as light-harvesting complexes, molecular

crystals, or molecular aggregates. More delocalized, loosely bound Wannier excitons

6An electron in a 10 nm GaAs quantum well fills a volume of ∼ 103 nm3.
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Table 1.1: Characteristic energies of several systems.
System Energy
Hydrogen atom (H) ionization 13600 meV
Hydrogen molecule (H2) dissociation 4500 meV
Trihydrogen molecule (H3) binding not stable
Trihydrogen cation (H+

3 ) dissociation [37] 4500 meV
Water-water hydrogen bond (H2O–H2O) dissociation 250 meV
GaAs quantum well exciton (H) binding 10 meV
GaAs quantum well biexciton (HH) binding 1 meV

are often found in inorganic systems such as semiconductors. Wherever they are

found, their small constituent effective masses mean that excitons are governed by

the laws of quantum mechanics.

The properties of excitons are determined by the material in which they reside.

Although changing materials is one way to obtain excitons with different properties,

an alternative way to alter the exciton properties is to use nanostructuring tech-

niques to change the size or shape of the material [28]. In this manner, the size of

the exciton is limited by the spatial dimensions of the object, not by the Coulomb

interaction between the electron and hole. The confined exciton often has remarkable

size-dependent optical properties. Many types of nanostructures have been synthe-

sized. Early structures were quantum wells—one dimension of confinement—and

quantum dots [29, 30]—three dimensions of confinement. Quantum rods, wires and

tubes, with two dimensions of confinement, can also be fabricated. Exciting new fron-

tiers for nanofabrication include ‘nanoshells’ [31], ‘nanorattles’ [32, 33], ‘nanobones’

[34], and nanoparticles able to deliver pharmaceuticals [35, 36]. The sample studied

in this thesis is GaAs that has been fabricated into a 10 nm wide quantum well.

This confines the exciton in one dimension to just below its natural Bohr radius,

results in a slightly increased binding energy relative to bulk GaAs, and causes the

two degenerate valence bands to split energetically.

In short, electrons in GaAs take advantage of their quantum mechanical nature

(the particle-wave duality) when they are essentially freed from their atomic orbitals

and to form valence bands; spatially, they are delocalized like waves over a large

spatial region. Photoexcited electrons are attracted to the nuclei even less. The

promotion of an electron to the conduction band leaves an excess positive charge in the

valence band, a hole. The Coulombic attraction between the positively charged hole

and the negatively charged electron results in binding between the two particles. The

attraction between particles with opposite charge (and the repulsion between particles

with similar charge) is the ‘simple rule’ that will lead to the complex behaviors—

16



τ

k
a

k
b

k(3)
sig = 2k

b
 – k

a
sample

detector

Figure 1-2: Third-order ‘self-diffraction’ measurement. Field Ea, which propagates in a
direction ka, forms exciton coherences. After a time delay τ , the first interaction by field
Eb—propagating in direction kb—forms spatially periodic exciton populations, and its sec-
ond interaction generates rephasing exciton coherences which radiate signal in the phase-
matched direction, 2kb − ka.

many-body interactions—measured in this thesis.

1.4 Coherent exciton dynamics

The history of coherent spectroscopic experiments on excitons in semiconductor quan-

tum wells is well documented (hundreds of publications) and has been reviewed several

times [27, 38–41]. Therefore we provide only a brief summary here. Studies of semi-

conductor nanostructures began in the 1980s when time-domain experiments were

performed in the coherent regime immediately after photoexcitation to measure the

transient exciton dynamics. The intent was to understand the distinct physical pro-

cesses that led to exciton dephasing. These measurements were performed at the same

time that nonlinear spectroscopy theories were being developed [16], and the studies

tested theories about the coherent responses [42, 43]. Although the first experiments

did not have sufficient time resolution to measure exciton dephasing, the strong sig-

nals motivated continued efforts [44–48]. Additional experiments with shorter pulses

established the exciton dephasing time in GaAs, but left many questions unanswered

[49, 50].

Experiments performed on a variety of semiconductor nanostructures under dif-

ferent experimental conditions noted some of the contributions to exciton dynamics

and dephasing, including:

1. coherent oscillations due to excitons in different wells [51–55],

2. coherent oscillations due to excitons in the same well [56, 57],

3. exciton-phonon scattering [58, 59],

4. exciton–free-carrier scattering [60–65],

5. disorder and localization [66, 67],

6. the AC Stark effect [68, 69],
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7. magnetic field effects [70].

Importantly, the observed signal oscillations due to excitons in the same well—the

second item above—were in fact due to quantum beats caused by quantum mechanical

coupling between exciton states, and they were not due to macroscopic polarization

interference effects [51, 71].

Most of these measurements were conducted as two-beam, four-wave-mixing mea-

surements as shown in Fig. 1-2. Two laser beams, in directions given by wave vectors

ka and kb, were focused to a spot in the sample. The field provided by the fem-

tosecond optical pulse in beam ka generated exciton coherences; the electric field Ea

induced coherent oscillations of electronic charge density that oscillated at the exci-

ton frequency with a well defined phase. After a variable delay, τ , the field in beam

kb interacted twice with the sample; its first interaction generated spatially periodic

exciton populations by stopping the coherent oscillations because this field interac-

tion completed the two dipole operations necessary to absorb the energy from the

photon. Then, the second interaction by field Eb again generated exciton coherences.

These coherent oscillations had the same frequency but opposite sign as the initial

exciton coherences, so that dephasing due to inhomogeneity was reversed [72]. These

coherences radiated signal in the phase-matched direction [73], and that signal was

measured using a detector. In this manner, the initial field created coherences that

evolved during time period τ , and the final fields were used to ‘watch’ these decaying

oscillations.

The studies revealed that although exciton resonances dominate the nonlinear

response, strong exciton-phonon and exciton–free-carrier scattering result in a loss

of exciton coherence even at low temperatures. Thus, current studies are performed

at temperatures below 10 K to extend the duration of the exciton coherences, and

pulses no shorter than about 100 fs in duration are used to minimize the number of

excited free-carriers.

1.5 Exciton many-body interactions

Most of the preceeding observations were explainable using simple models—such as

the optical Bloch equations described in Sec. 2.3—that included a small number of

energy levels for the exciton states but did not contain particle interaction mech-

anisms. Although these models matched experiments rather well, there were a few

pieces of experimental evidence suggesting that the third-order nonlinear response de-

viated from the simple models. The most obvious deviation was the anomalous signal

observed at ‘negative’ delay times in self-diffraction measurements as illustrated in
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Figure 1-3: Third-order self-diffraction signals. (a) Predicted signal without exciton inter-
actions. No signal is observed at ‘negative’ delays when field Eb interacts before field Ea.
(b) Including exciton interactions, negative-delay signals can predicted. The existence of
these negative-delay signals has motivated research on many-body interactions for decades.

Fig. 1-3. The simple models predict that there should be no signal emitted in the

self-diffraction experiment when pulse kb interacts with the sample before pulse ka,

but experiments showed that signal did exist [74, 75]. In fact, the signal at nega-

tive delays was nearly as strong as that observed at positive delays. It was surmised

that the signals arose when the first two field interactions induced nonradiative two-

quantum coherences from which the third field interaction generated single-exciton

coherences that radiated in the signal direction. The two-quantum oscillations are

coordinated four-particle motions that are nonradiative because they do not have an

associated dipole moment. Other observations, such as unexpected signals when the

optical polarization direction between the two beams was varied [76–81], also could

not be explained using the non-interacting exciton model.

These experiments illustrated the sensitivity of the coherent nonlinear response

to many-body interactions, and the deviations from the simple model provided an

opportunity to explore exciton many-body interactions. Microscopic theories were

developed that did not involve rediagonalization to an exciton basis. The complete

treatment has been called the nonlinear exciton equations, the semiconductor Bloch

equations, or the dynamics controlled truncation approach. All three techniques treat

the electrons, holes, and their interactions explicitly, although the semiconductor

Bloch equations work in a momentum basis while the other two approaches use a site

basis. Additionally, in the exciton representation, physical insights were gained by

modifying the optical Bloch equations. The modified equations phenomenologically

included mean-field many-body interactions such as local field and excitation-induced

effects.

Local field effects (LFE) were initially implicated as the source of the negative-

delay signal [74, 75]. We will see in Sec. 2.3 how these effects are incorporated
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mathematically. Physically, signals due to local fields are produced in the following

manner. The initial field due to field kb produces a first-order polarization which

radiates as a free-polarization decay. The free-polarization decay time is governed

not by the pulse duration but rather by the exciton dephasing rate. This radiated

field—now picoseconds in duration rather than femtoseconds—can then drive new

excitations in the sample, and the new excitations can produce signal in the phase-

matched direction once the second pulse arrives.

Other measurements showed that increasing the laser intensity caused the exci-

ton coherences to dephase more quickly and the exciton emission energy to shift.

Although the excitation-induced dephasing (EID) effect was noticed in early mea-

surement [82, 83], only later was it interpreted as a many-body interaction. An

excitation-induced energy shift (EIS) was also noticed [84, 85], and its signature in

the coherent reponse was measured [86]. These two phenomena can be understood

physically in terms of exciton-density-dependent changes to the linewidth (EID) and

central component (EIS) of frequency ‘gratings’, periodic variations in amplitude as

a function of frequency formed by two phase-coherent pulses with a relative delay.

EID and EIS can also be understood physically in terms of the free polarization decay

above, where the second field interaction from pulse kb produces spatially modulated

excited state populations, but now regions with dense populations decay more quickly

than regions with sparse populations [41]. These two many-body interactions are also

described in Sec. 2.3.

The coupling between excitons and free carriers is another type of many-body

interaction. Signals due to exciton–free-carrier scattering can often dominate the

nonlinear response, and these signals are present in many experiments described in

this thesis. A spectral feature due to interactions between excitons and free electron-

hole pairs was reproduced by including an EID term in the modified optical Bloch

equations [87]. As mentioned above, we often tune the pulse spectrum to excite the

fewest possible number of free carriers to prevent rapid dephasing of the coherent

signal.

While mean-field many-body interactions aided the interpretation of the experi-

mental results, they could not describe the material response completely. Biexciton

contributions were also explored. Just as excitons are analogous to hydrogen atoms,

H, biexcitons are analogous to hydrogen molecules, H2. They are perhaps the most

straightforward way to interpret the negative delay signal [88, 89]. First observed

as biexciton-exciton emission in a photoluminescence measurement [90], a biexciton

is produced when a pair of excitons bind. For binding to occur, the constituent ex-
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citons must have opposite spin7. The biexciton binding energy in GaAs quantum

wells is about 1 meV [91]. Biexcitons are just one member of a class of four-particle

correlations. Correlations among multiple charged particles are essential features of

many systems and processes including quantum dot lasers [92], quantum logic gates

[93], light harvesting complexes [94], scintillators [95], high-harmonic generation [96],

entangled photon sources [97], and perhaps soon exciton-polariton condensation [98].

Although the progress in isolating and understanding the various many-body in-

teractions was substantial, numerous open questions remained. The next section

describes additional insights learned using two-dimensional spectroscopy, a recent

significant advance in experimental methodology. Before progressing to that topic,

we describe in more detail the physical process involved in generating nonlinear signals

due to excitons and their interactions. It is difficult to provide a real-space descrip-

tion of coordinated four-particle motion that is both accurate and lucid. Although

challenging, it is important to understand coordinated several-particle motion because

most many-body interactions, including LFE, EID, EIS, biexcitons, and exciton–free-

carrier scattering, can be interpreted as four-particle motions. Essentially, a single

coherent electric field interaction will induce motions of electronic charge density in

the sample. The motions are oscillations along a spatial coordinate related to the inci-

dent field polarization; charges that oscillate in this manner emit radiation8. A second

field interaction can have several effects. Since this discussion focuses on exciton in-

teractions, we consider the situation in which this second field induces more complex

motions, such as a quadrupolar motion. This motion involves four particles—two

electrons and two holes—but does not have an associated dipole moment so it does

not radiate light. A third field, however, can interact with the particles involved in

the quadrupole to induce charge oscillations that do radiate. By varying the time at

which the third field interacts, the quadrupole motion can be tracked by its influence

on the radiated signal, specifically the phase of the signal.

We can describe this in more detail using concepts from quantum mechanics; an

illustration is given Fig. 1-4. As discussed above, the absorption of a photon with

enough energy can promote an electron from the valence band to the conduction

band. Both the electron and the residual positive charge to which it is attracted—

the hole—are delocalized throughout the space of the material. In the language of

7In the ground-state spin configuration, the two electrons have opposite spins, as do the two
holes.

8If this were the only field interaction and we placed a spectrometer in the appropriate position,
this notion could be used to understand a linear absorption measurement. The emitted field is
phase-shifted with respect to the incident field, causing a diminished amplitude at the resonance
frequency. The phase shift is described by the Maxwell equation presented in Sec. 2.1.1.
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Figure 1-4: Hypothetical two-quantum signal in a slightly anharmonic potential. (a) Ini-
tially, the system is in the ground state; the wavepacket is stationary. (b) Field E1 creates
a coherent superposition. The wavepacket oscillates during time period τ1 between the left
(solid) and right (dashed) sides of the potential. (c) Field E2 creates the two-quantum
coherent superposition. Although the wavepacket moves during time period τ2 between the
solid and dashed positions, there is no change in the average spatial position. Field E3

projects the two-quantum motion back to a one-quantum wavepacket as in (b). This mo-
tion emits the signal field, Eemit, during time period τ3, returning the system to the ground
state (a). These fields can be related to the self-diffraction experiment: fields E1 and E2

correspond to the two interactions by field Eb, and field E3 corresponds to the interaction
by field Ea.

light-matter interactions, absorbing a photon requires two electric field interactions

of opposite conjugation (+k and −k). A single light-matter interaction—for instance

the electric field interaction due to field Eb in the self-diffraction experiment—will

induce a superposition between the ground state and the exciton state. If the elec-

tric field is coherent, this superposition will have a well defined phase and can be

described as a spatial wavepacket of electron density. Unlike the smooth Gaussian

wavepackets presented in Fig. 1-4 or those discussed in introductory quantum me-

chanics9, in a semiconductor this wavepacket will have a complex spatial distribution

since it involves electronic charge density that is distributed across many lattice sites

and modulated by the nuclei and their bonds at each site. In both cases, the average

spatial position of the wavepacket oscillates as a function of time. These oscilla-

tions in electron charge density will radiate light. The second field interaction—if

it has the same conjugation as the first field and if it acts before the initial mo-

tion has stopped—can cause motions that oscillate at twice the frequency. But this

motion, although oscillatory, would not involve a time-dependent variation in the

average spatial position of charge density. Thus this motion—described above as a

quadrupolar motion—would not radiate. Spatially, this could correspond to a sym-

metric motion reminiscent of a molecular ring-breathing mode. If the four particles

involved in the motion had the appropriate spin pairings such that the energy of the

9These wavepackets typically involve many excited states with well defined amplitudes and
phases.
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four-particle correlation would be lowered10, the frequency of the four-particle motion

would decrease slightly. The third field can interact with this wavepacket to cause

new electronic charge density oscillations that have a time-dependent average spatial

position. These final oscillations emit the signal field in the phase-matched direction.

This process has been compared to the nuclear spin precessions of multiple-quantum

NMR [99].

1.6 Two-dimensional optical spectroscopy

The advent of two-dimensional optical spectroscopy has heralded a new era of inves-

tigation into exciton many-body interactions. Multidimensional Fourier-transform

spectroscopy was developed in the 1970s and 1980s in the context of nuclear mag-

netic resonance (NMR) [100–104], in which a series of radio frequency pulses ma-

nipulated the nuclear spins of each active nucleus in the sample. By varying the

times at which the pulses interact and detecting the full signal field at each delay

point, signal oscillations can be mapped and phases in multiple times periods can

be correlated. Two-dimensional spectra are powerful primarily because the

presence of a cross peak immediately reveals a quantum correlation. In al-

most all cases, the existence of a cross peak between different absorption and emission

frequencies is direct evidence that two eigenstates are coupled quantum mechanically.

Two-dimensional NMR revolutionized synthetic chemical characterization procedures

because it provided important molecular structure information encoded in the cross

peaks: if two atoms were spatial neighbors in a molecule, their spins coupled, and

that coupling resulted in a cross peak. In this way, features that overlapped in one-

dimensional spectra were separated using the new dimension, and this separation

revealed molecular structural information [105].

Although multidimensional NMR spectroscopy has existed for decades, only since

the late 1990s have similar methods been applied to other regions of the spectrum.

The slow adoption of multidimensional techniques was due to the fact that as the

frequency of radiation increases, it becomes increasingly difficult to maintain the

necessary phase stability [106]. Moreover, laser beams are used to deliver the pulses

in the optical regime. Laser beams have a directionality component determined by the

wave vector of the beams not relevant in NMR, where the sample length is shorter than

the wavelength. Two-dimensional Fourier-transform infrared (2D IR) spectroscopy

is now an important tool that uses vibrational transitions to reveal information on

10This small energy change is the binding energy of the biexciton.
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Figure 1-5: The power of two-dimensional spectroscopy. (a) System X has two uncorrelated
eigenstates while system Y has two correlated eigenstates. The linear spectra (top) are
identical. The two diagonal peaks (a and b) reveal the energies of eigenstates |1〉 and |2〉,
respectively. The cross peaks (c and d) present in the 2D spectrum of system Y indicate
that the two eigenstates are coupled. The dashed line indicates the ωdelay = ωemit diagonal.
(b) A two-quantum measurement. The peak is located slightly below the two-quantum
diagonal, ω2Q = 2ωemit. A small frequency shift—in our sample due to a binding energy—
is indicated by Δ.

topics as diverse as molecular anharmonicities [107–111], hydrogen bond dynamics

[112–116], protein and peptide dynamics [117–119], dye-sensitized solar cells [120],

and amyloid fiber formation [121]. Since the first report in 1998 [122] and subsequent

method development [123–137], many 2D Fourier-transform optical (2D FTOPT)

spectroscopy studies have been conducted to explore phenomena such as excitonic

many-body interactions [87, 99, 138–153], coherent intrachain energy migration in

conjugate polymers [154, 155], higher-lying excited states of molecules [156, 157],

energy dissipation in beta-carotene [158], exciton resonances in molecular aggregates

[134, 159–162] and nanotubes [163], and how electronic charge is shuttled among

chromophores in light-harvesting complexes [164–169]. Finally, efforts are underway

to extend multidimensional methods below the IR to the THz regime [170, 171] and

above the visible to the ultraviolet and x-ray regime [172, 173].

In multidimensional FTOPT spectroscopy, a series of femtosecond laser pulses is

used to create and manipulate coherent superpositions of system eigenstates. After

all the pulses have interacted, the system emits a signal in a direction that conserves
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energy and quasi-momentum. Crucially, the full signal field—both its phase and

amplitude—is detected. During a measurement, an input field(s) is delayed tempo-

rally, and the signal field is measured at each delay point. Repeated measurements

are collated and then Fourier transformed to create the 2D spectrum. This spectrum

correlates oscillations during time periods τdelay and τemit as peaks along frequency

axes ωdelay and ωemit, as shown in Fig. 1-5(a). Related to Fig. 1-4, τdelay = τ1

and τemit = τ3. In the example 2D spectra, the diagonal peaks reveal the eigenstate

energies; although not described in this example, their lineshapes contain dephasing

information. If cross peaks exist—as in system Y—the two states are coupled. In Fig.

1-5(b), we illustrate a different 2D measurement in which the pulse-timing sequence

was changed to induce oscillations derived from two quanta of the same eigenstate.

In this example, the two-quantum coherence oscillated at slightly less than twice the

frequency of a single exciton, due to a binding energy for the two-exciton (biexciton)

state. Related to Fig. 1-4, τ2Q = τ2 and τemit = τ3. As in many cases, most of the

unexpected spectral features revealed in the 2D and 3D FTOPT spectra presented

in the following chapters were due to many-body interactions. The spectra were

measured at varying nonlinear orders in the electric field under varying conditions to

explore several different many-body interactions.

The nonlinear signal field can contain many possible contributions that we can

isolate with even more specificity by tuning the parameters of each laser field. Recent

advances in experimental techniques now make it possible to specify each parameter

of each laser field, including the polarization, wave vector, temporal duration, optical

phase, and frequency content. Pulse sequences originally developed in NMR are now

applied routinely to the optical regime to accomplish specific tasks. For example,

third-order photon echo (rephasing) measurements—analogous to spin echo measure-

ments in NMR—can separate inhomogeneous dephasing (due to static disorder) from

homogeneous dephasing (dynamic phase fluctuations due to scattering). In many

cases, this control over the pulse parameters allows us to discriminate against all of

the signals except for the specified one.

1.7 Outline of this thesis

The rest of this thesis—which describes both the development of new spectroscopic

methods and the application of those methods to isolate and learn about exciton

interactions—is organized as follows. Chapter 2 reviews the nonlinear polarization

and outlines three theoretical approaches used to describe its microscopic origin.

Chapter 3 describes the construction, calibration, and operation of the experimental
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apparatus, and it includes a description of the data analysis procedures. Chapter

4 contains spectra performed to reveal properties of single, non-interacting excitons.

We extract exciton parameters such as absorption energies, emission energies, sam-

ple inhomogeneity, dephasing times, and exciton lifetimes. We also observe several

features due to many-body interactions. In Chapters 5–7 we isolate and measure

four-particle, six-particle, and eight-particle correlations, respectively. The results

are organized by the number of particles interacting, regardless of the order of the

nonlinear signal required to make the measurement. Chapter 8 both summarizes the

results on GaAs quantum wells and describes future experiments.
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Chapter 2

Nonlinear optical spectroscopy

Optical spectroscopy is a tool used to probe electronic resonances in atomic, molec-

ular, semiconductor, and biological systems. Linear spectroscopy involves only one

electric field interaction, and the broad features present in most linear spectra hide

important information about microscopic phenomena such as exciton-exciton and

exciton-phonon interactions.

Intense electric fields—almost always from a laser, where modern pulsed lasers

can reach peak intensities on the order of terawatts (1012 W)—can interact with

matter to produce nonlinear signals1. The link between lasers and nonlinear optics

was established when the first optical nonlinearity [174] was observed less than one

year after the laser was developed [175]. Nonlinear signals are often visually appealing

because they can contain new frequencies or propagate in new directions—or both.

Nonlinear optical signals created by a sequence of intense laser pulses can be used

to produce multidimensional spectra, which in turn can provide detailed information

about the sample.

There are two methods commonly used to describe how input electric fields, Ein,

create output signal fields, Eout. The parallel sets of terminology can be confusing, so

they are depicted graphically in Fig. 2-1. In both methods Ein creates a polarization,

P , which is converted by one of Maxwell’s equations, ME, to Eout. As we will show,

the mathematics of this final step do not change the time-dependence of the signal

significantly, so usually only the polarization is calculated.

In the first method—outlined in the top two steps of Fig. 2-1—only the macro-

1These fields are intense, but even when focused, the experiment still takes place in the pertur-
bative limit because the electric field of a typical sample is orders of magnitude greater. In our
experiments, the pulse energy is about 10 pJ, the pulse duration is about 100 fs, and the beam is
focused to a spot size of about 10−5 cm2; the radiative flux is on the order of 107 W/cm2. On the
other hand, the electric field intensity in a hydrogen atom is on the order of 1017 W/cm2.
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Figure 2-1: An illustration of the mathematical procedure used to calculate a nonlinear
signal field from the input field(s). In the macroscopic-only picture, which excludes the
steps colored red, the input electric field, Ein, interacts with the material described by
either its susceptibility, χ, or its response function, R, to create a polarization, P . This
polarization—an oscillating charge distrubution inside a material—is a source term in a
Maxwell equation, ME, which generates the output electric field, Eout. The case is similar
when the quantum nature of the material is considered by following the steps colored red.
The system response can be calculated in the density matrix formalism, ρ, whose time
dependence is governed by the quantum-Liouville equation, qL. This equation incorporates
both the system Hamiltonian, Ĥ, and Ein. The polarization can be computed by taking
the trace over the dipole operator, Tr[μ · ρ], and the signal field can be calculated as before.

scopic properties of the sample are considered. These properties are encoded in the

elements of the susceptibility tensor, χ, or equivalently, the response function tensor,

R. Input electric fields, incorporated perturbatively, can create a nonlinear polariza-

tion if the appropriate tensor element is nonzero.

The second method—using the red-colored steps in Fig. 2-1 and ignoring χ and

R—is used to learn about the quantum nature of the excited chromophores. The

microscopic system is usually formulated in terms of the density matrix, ρ(t). The

time dynamics of the density matrix are governed by the quantum-Liouville equation,

qL. This equation uses a system Hamiltonian, Ĥ , and it incorporates the input field

interactions perturbatively. The Hamiltonian can be simple or complicated, and we

will see examples of both in this chapter. The density matrix is propagated over all

of the field interactions. The trace operation is then performed after projection by

the dipole operator, yielding a result proportional to the macroscopic polarization:

P ∝ Tr [μ ·ρ]. The density matrix approach explicitly treats the system Hamiltonian,

which includes both mixed and pure quantum states of the system, and can include

the effects of temperature and coupling to the environment.

The standard approach to understanding nonlinear optical spectroscopy can be

confusing because many sources use both methods and interchange terminology in

the following manner. The macroscopic-only view is used to determine the directions

in which signals will propagate—the phase matching conditions—using the frequency

domain susceptibilities. Meanwhile, the time-dependence of the polarization is com-
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Table 2.1: Jones vector representation of optical polarization

Linear horizontal

[
1
0

]
Linear vertical

[
0
1

]

Right circular 1√
2

[
1
−i

]
Left circular 1√

2

[
1
i

]

puted using the density matrix. This discussion is then often cast in terms of response

functions, R.

In Sec. 2.1, we first review the nonlinear optical polarization and its microscopic

origins. We then survey three theoretical approaches used to compute multidimen-

sional spectra from the density matrix through the nonlinear optical polarization in

Secs. 2.2–2.4. We review these concepts with some detail because the array of mea-

surements presented in the following chapters demands that we have a command of

the material so that we can traverse the ever-changing experimental conditions with

ease. Finally, in Sec. 2.5 we discuss how the nonlinear optical methodology applies

to the sample.

2.1 Nonlinear polarization

In this section we review how observed signals, Eout, can be computed from the

macroscopic polarization, PNL, through one of Maxwell’s equations. We then use the

density matrix, ρ, to relate the quantum mechanics of the microscopic chromophores

to the macroscopic polarization. The approach is semiclassical; the electric field is

treated classically but the material response is treated using quantum mechanics. A

classical electric field—a real-valued oscillating wave—can be decomposed using the

Euler relations into a sum of two exponentials, and can thus be expressed as

En(r, t) = ên(t)Ẽn(t)(ei(knr−ωnt) + c.c.), (2.1)

where Ẽn is a slowly-varying envelope (perhaps a Gaussian), ωn is the frequency, kn

is the wave vector, and ên—which can vary with time—is a unit vector describing the

optical polarization of the beam. Beam polarizations can be expressed using Jones

vectors, see Table 2.1.
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2.1.1 Macroscopic description

For the moment, the discussion remains entirely in the macroscopic realm. Through-

out most of the discussion, we suppress detailed tensor descriptions to ease interpre-

tation. An input electric field, Ein, can create an electronic charge distribution in a

material—a polarization, P—through the material susceptibility, χ, as given by

P(r, ω) = χ(ω)Ein(r, ω). (2.2)

Susceptibilities are frequency-domain tensors that are connected to time-domain re-

sponse function tensors through a Fourier transform

R(t) = F [χ(ω)] (2.3)

P(r, t) =
∫ ∞

0
dτR(τ)Ein(r, t − τ). (2.4)

The value of P can be expressed as a dipole moment per unit volume. Ein creates

an electronic charge distribution which can have a complicated temporal and spatial

nature. If Ein is coherent, the charge distribution can oscillate with a well defined

phase over macroscopic distances. Oscillating charges radiate electric fields, hence

the polarization acts as a source term in the Maxwell equation

∇2Eout(r, t) − 1

c2

∂2

∂t2
Eout(r, t) =

4π

c2

∂2P(r, t)

∂t2
, (2.5)

to radiate the signal field Eout(r, t). Using Eqn. 2.5, the coherent signal field can

be calculated in a straightfoward fashion from the sample polarization. For a thin

sample of length l, the time dependence of the signal field at frequency ωs in the

phase-matched direction, ksig, at a specified detector location is given by

Eout(t) = i
2πωsl

nc
P (t)sinc

(
Δkl

2

)
eiΔkl/2. (2.6)

The signal field and the polarization differ only slightly. There is a π
2

phase shift

between them; the amplitude is modulated according to the phase-mismatch Δk; if

the phase-mismatch or the pathlength, or both, is large, the final exponential term

can cause an additional phase shift; and the two quantities have different units. The

time-dependent oscillations in P (t) will be altered by at most constant phase and

amplitude factors. Thus in most cases the task of calculating the signal field is

reduced to calculating just the polarization. For an example of when it is important

to calculate the full field, see Ref. [176].
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Material response information is encoded in the values of the elements of χ, and

this information is reported in the total polarization, P(r, t). If a signal is generated

in a new direction or with a new frequency, the total polarization must contain a

nonlinear component,

P(r, t) = P(1)(r, t) + PNL(r, t). (2.7)

The microscopic origin of this nonlinear polarization, PNL, must be treated for the

specific system under study, and this ultimately provides insights into the system

behavior [16, 177, 178]. For now, we remain in the macroscopic realm and assume

that the input electric fields are capable of producing a nonlinear polarization because

we observe such signals in the laboratory. The polarization can be expanded as a

power series in the field by

P = P(1) + P(2) + P(3) + . . . , (2.8)

where the linear (P(n=1)) and nonlinear (P(n>1)) polarizations are defined in terms of

their respective susceptiblities and the input fields by

P(1)(ω) = χ(1)Ein(ω), (2.9)

P(2)(ω) = χ(2)E2
in(ω), (2.10)

P(3)(ω) = χ(3)E3
in(ω), (2.11)

and so on for higher orders. The nth-order induced polarization, P(n), can then be

written in the time domain as a convolution between the nth-order response function,

R(n), and n input electric field(s)

P(n)(r, t) =
∫ ∞

0
dτn

∫ ∞

0
dτn−1 . . .

∫ ∞

0
dτ1R

(n)(τn, τn−1, . . . , τ1) (2.12)

×En(r, t − τn)En−1(r, t − τn − τn−1) . . .E1(r, t − τn − τn−1 − . . . − τ1).

If the directionality can be ignored, then Eqn. 2.12 can be reduced to yield

P (n)
en

(t) =
∫ ∞

0
dτn

∫ ∞

0
dτn−1 . . .

∫ ∞

0
dτ1R

(n)
e1,e2,...,en

(τn, τn−1, . . . , τ1) (2.13)

×En(t − τn)En−1(t − τn − τn−1) . . . E1(t − τn − τn−1 − . . . − τ1),

where the optical polarizations of the input beams, ên, have selected a specific element

of the response function tensor, R(n)
e1,e2,...,en

. It is in this manner that the response

functions (or susceptibilities) can couple fields in one spatial direction to another

spatial direction. Input signal fields with particlar wave vectors can generate signal
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fields in new directions. The response function tensors are macroscopic quantities

whose elements contain all of the measurable properties of the sample, including

crystal symmetry, dipole strengths, and resonance frequencies. As the order increases,

the rank of the tensor increases, and the number of elements in the tensor increases

dramatically. Fortunately many elements have a value of zero, and for samples with

inversion symmetry, such as gases and liquids, the even-ordered susceptibilities (χ(2),

χ(4), . . .) vanish entirely.

Energy and momentum conservation of the input fields, the phase matching condi-

tions, must be satisfied for signal fields to propagate in new directions. The physical

interpretation of this is that the polarization waves in the sample are interfering

constructively in only certain directions. The two conservation laws for n field inter-

actions can be expressed as

ksig =
∑
n

±kn, and (2.14)

ωsig =
∑
n

±ωn. (2.15)

For example, consider the situation if the sample has nonzero χ(3) tensor elements.

A third-order polarization can then be produced in the following manner

P(3)
ed

(r, ωsig) = χ(3)
eaebeced

[Ẽa(ω)Ẽb(ω)Ẽc(ω)ei((−ka+kb+kc)r−(−ωa+ωb+ωc)t + c.c.], (2.16)

where the optical polarizations of the three input beams have selected the χ(3)
ea,eb,ec,ed

element of the χ(3) tensor, or equivalently in the time domain as

P(3)
ed

(r, t) =
∫ ∞

0
dτc

∫ ∞

0
dτb

∫ ∞

0
dτaR

(3)
eaebeced

(τc, τb, τa)[Ẽa(t − τc)Ẽb(t − τb)

×Ẽc(t − τa)e
i((−ka+kb+kc)r−(−ωa+ωb+ωc)t + c.c.]. (2.17)

In this example, fields Eb and Ec contribute forward-propagating components (+k);

they are called nonconjugate fields. Field Ea contributes a backward-propagating

component (−k) and is called a conjugate field. The resulting signal field will prop-

agate in a direction ksig = −ka + kb + kc with a frequency ωsig = −ωa + ωb + ωc.

If the frequencies of the three input fields are the same—a common situation—this

is called degenerate four-wave-mixing (DFWM). We use this type of signal in many

experiments presented in Chapters 4 and 5. Similar phase-matching analyses are used

throughout the thesis to calculate the directions in which signal fields will propagate,

and how many input field interactions were involved in producing those signal fields.

This is as complete a general description as possible in the macroscopic-only do-
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main, the top two steps of Fig. 2-1. This level of treatment is sufficient to predict in

what directions and with what frequencies signals will emerge given that the response

function tensor has nonzero elements.

2.1.2 Microscopic origins

We now consider the microscopic nature of the material—the quantum mechanics of

the system—so that we can calculate the time dependence of the signal field, Eout(t).

Most derivations of the equations of motion work in an ‘interaction picture’ and

use the density matrix, ρ—rather than wavefuctions—to describe the system. The

wavefunction and density matrix approaches are equivalent, but the density matrix

approach has several advantages for nonlinear spectroscopy. A macroscopic observable

in the form of the expectation value of any operator, Â, can by found from quantum

mechanics [179] by taking the trace over the density matrix

〈A〉 = Tr[Â · ρ]. (2.18)

We learned in the preceeding section that the induced polarization, P (t), is connected

to the dipole moment. Thus, macroscopic polarizations can be computed from the

density matrix using the quantum mechanical dipole moment operator, μ̂, as given

by

P (t) ∝ 〈μ̂(t)〉 = Tr[μ̂(t) · ρ(t)]. (2.19)

Each microscopic dipole results from a coherent superposition of system eigenstates,

|Ψ〉 =
∑

i ciφi, as described in Sec. 1.5. The frequency, orientation, and phase of

each dipole is defined by the excitation fields and the spatial location in the sample.

The microscopic dipoles act like a phased array to generate a macroscopic signal field

in a direction determined by phase matching of the excitation fields. The emergent

signal field is the result of interfering signals from many individual chromophores. In

this manner, the phase of the generated signal field depends on the phase of each

microscopic excitation.

In Eqn. 2.19, time dependence was made explicit. The time dependence of the

density matrix is governed by the quantum-Liouville equation

∂

∂t
ρ(t) = − i

h̄
[Ĥ(t), ρ(t)], (2.20)

where the Hamiltonian is often separated into two parts, a system Hamiltonian, Ĥ0,

and the perturbative interaction(s) with the electric field(s). This can be expressed
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V1

t2

V2

tn

Vn
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...
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Figure 2-2: Sequential operations on the density matrix. Fields interactions Vn occur at
times tn and are separated by time periods τn.

as

Ĥ(t) = Ĥ0 + V̂ (t), (2.21)

where V̂ (t) = −−→μ (r) ·E(r, t).

Often, Ĥ0 is known well enough to define the eigenstates of interest and several

field interactions occur sequentially. These sequential events are depicted in Fig. 2-2.

The density matrix is calculated in a stepwise fashion, where each field interaction

introduces a perturbation at time tn, and during time interval τn, the system evolves

according to the quantum-Liouville equation. In some computations, the differential

forms of the equations of motion are integrated numerically. In other computations,

the equations are transformed from differentials to integrals. This results in a nested

set of commutators,

ρ(n)(t) =
(
− i

h̄

)n ∫ t

−∞
dtn

∫ tn

−∞
dtn−1 . . .

∫ t2

−∞
dt1

[
V (tn),

[
V (tn−1),

[
. . . , [V (t1), ρ0] . . .

]]]
.

(2.22)

To calculate the system polarization using the density matrix, we switch from inter-

action times, tn, to time intervals, τn, and take its trace, P (n)(t) = Tr
{
μ(t) · ρ(n)(t)

}
.

This transformation results in an equation of the form

P (n)(t) =
(
− i

h̄

)n ∫ ∞

0
dτn

∫ ∞

0
dτn−1 . . .

∫ ∞

0
dτ1θ(τ1)θ(τ2) . . . θ(τn)

×En(t − τn)En−1(t − τn − τn−1) . . . E1(t − τn − τn−1 − . . . − τ1)

×Tr

{[[
. . . [μ(τn + τn−1 + . . . + τ1), μ(τn−1 + τn−2 + . . . + τ1)] , . . .

]
, μ(0)

]
ρ0

}
,

(2.23)

where the step functions, θ(τ), enforce causality. At this point, derivations often mix

the macroscopic and microscopic terminologies by comparing Eqn. 2.23 to Eqn. 2.13
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and concluding that the macroscopic response function is given microscopically by

R(n)
e1e2...en

(τ1, τ2, . . . , τn) =
(
− i

h̄

)n

θ(τ1)θ(τ2) . . . θ(τn) (2.24)

×Tr

{[[
. . . [μ(τn + τn−1 + . . . + τ1),

μ(τn−1 + τn−2 + . . . + τ1)] . . .
]
, μ(0)

]
ρ0

}
.

The nested commutators can be expanded into a sum of sequences of dipole operators.

This sum contains terms with different orderings of the dipole operators, and usually

each distinct time ordering is labeled by an individual response function, R(n)
m . The

complete nonlinear signal field detected in the phase-matched direction includes all

possible energy and momentum conserving sequences of interactions that link the

eigenstates. Often, there are many possible pathways through Liouville space that

can contribute to the total signal field, and they can interfere with each other. This

will be discussed more in the next section for the specific example of third-order

response functions.

In this section we showed that signal fields, Eout, are generated by sample polar-

izations, P , through the Maxwell equation, Eqn. 2.5. The macroscopic polarization

is connected to quantum mechanical chromophores using the expectation value of the

dipole operator, μ̂, through Eqn. 2.19. The time-dependent density matrix, ρ(t),

is calculated using the quantum-Liouville equation, Eqn. 2.20. This resulted in a

series of nested commutators that is convolved with the electric fields in a sometimes

intractable fashion.

The three methods described in the rest of this chapter will allow us to compute

the nonlinear polarization through the density matrix under different approxima-

tions, leading to different ranges of applicability. For instance, the sum-over-states

model is purely perturbative, while the other two methods can be used to model non-

perturbative effects as well, such as Rabi oscillations [180]. Another distinguishing

characteristic of any model is the basis set chosen for the computation. A systematic

many-body analysis treats the electron and holes separately, and includes Coulomb

potentials explicitly to describe multi-particle correlations. Such an analysis may

match an experimental result very well, but it may be computationally prohibitive.

On the other hand, models that work in an exciton basis can provide significant

physical insights with minimal computational effort.

The most commonly used method is the sum-over-states model, where the fields

are assumed to be perturbatively-small impulse functions, and the individual response
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functions can be understood using a diagrammatic method because the field convo-

lutions become trivial. The Bloch equations—the second method—are also widely

used and are not limited to the perturbative limit. As the name suggests, they work

well in the context of spatially homogeneous extended samples such as semiconduc-

tors. Both methods use exciton states as the fundamental unit of excitation. In the

third approach—the nonlinear exciton equations—electrons and holes are considered

separately and the Coulomb correlations are explicit. In the chapters that follow, we

use all three approaches when appropriate.

2.2 Sum-over-states model

The sum-over-states model is an intuitive tool for analyzing multidimensional spectra,

and the model is the subject of review articles [126, 181, 182], textbooks [16, 178],

and online class notes [183, 184]. Using a few—often accurate—approximations, the

nonlinear polarization induced by the excitation fields can be reduced to a sum of

terms. Each term is a specific time ordering of dipole operators that traces one

path through Liouville space. Each path can be represented by an easily understood

Feynman diagram. The diagrams provide insights into the origin of peaks and features

associated with system eigenstates.

In this model, the nonlinear polarization is calculated in the impulsive limit, where

the electric fields retain their frequency and wave vector, but the temporal dependence

is assumed to be a δ-function,

Ẽn(t) = δ(t)|Ẽn|. (2.25)

The model requires the energy levels of all eigenstates and their transition dipoles to

be input manually, often in the form of matricies. It cannot include exciton-exciton

interactions. These conditions generally hold when studying molecular vibrations,

Frenkel excitons, or atomic and molecular excited states using femtosecond pulses,

but the model often fails to predict signals due to many-body interactions among

Wannier excitons because of the long-range Coulomb interactions. These assumption

reduce Eqn. 2.23 to

P (n)(t) = R(n)(τ1, τ2, . . . , τn)
∣∣∣E1(t − τn − . . . − τ1)

∣∣∣ . . . ∣∣∣En(t − τn)
∣∣∣, (2.26)

where R(n) can be written in terms of individual response functions, R(n)
m , as
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R(n)(τ1, . . . , τn) =
(
− i

h̄

)n

θ(τn) . . . θ(τ1)

×∑
m

[
R(n)

m (τ1, . . . , τn) − R∗(n)
m (τ1, . . . , τn)

]
. (2.27)

At third order for a two-level system, there are eight total terms, one of which is given

by

R
(3)
1 (τ3, τ2, τ1) =

∑
a,b,c,d

p〈μ̂ad(τ3 + τ2 + τ1)μ̂dc(τ2 + τ1)μ̂cb(τ1)μ̂ba(0)〉. (2.28)

The individual response functions provide minimal physical insight when written

explicitly as a sequence of dipole operators. However, each term can be depicted using

a diagramatic perturbation method to keep track of the states and the light-matter

interactions. If desired, the Feynman diagrams can be converted easily to a mathe-

matical expression for the resulting nonlinear polarization [16] and this can be used

to compute a spectrum. Usually, however, the diagrams are used merely to predict

at what frequency coordinates pathways will appear. These expressions include such

parameters as the energy levels, dephasing times, lifetimes, dipole transitions, and

even coherence transfer rates [185].

Although resonant third-order responses (four-wave-mixing) are the most-often

described signals using Feynman diagrams, a wide variety of nonlinear optical phe-

nomena can be depicted through these diagrams. Fig. 2-3 shows a few examples. In

part (a), the typical three-pulse four-wave-mixing rephasing experiment is depicted.

The first field interaction induces a coherence between the ground state |0〉 and an ex-

cited state |1〉. The second field interaction completes the photon absorption process

to the excited state. The third field induces new coherences between the ground and

excited states. These coherence emit signal in the phase-matched direction. A non-

resonant four-wave-mixing process is illustrated in (b), where a difference-frequency

process between the first two input fields creates a coherence involving a nonresonant

state—for example, a Raman-active vibration—and the third field stimulates the

emission; fifth-order nonresonant signals (2D Raman) have now been observed even

though they necessarily involve a formally forbidden transition [186–192]. Part (c)

is a similar nonresonant signal although it is a fifth-order process requiring four field

interactions to induce a hyperpolarizability [188]. Finally, a pathway for a third-order

pump-probe signal is illustrated in part (d). This process is similar to (a) except the

first two field interactions occur simultaneously. Single-shot pump-probe measure-

ments can be used to study lattice vibrations during irreversible phase transitions
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|0〉〈0|

Figure 2-3: Feynman diagrams for a variety of nonlinear signals. (a) Three-pulse four-wave-
mixing photon echo (b) Third-order Raman (c) Fifth-order Raman due to a hyperpolariz-
ability (d) Third-order pump-probe.

[193]. Most nonlinear optical techniques—those discussed above and others, such as

pathways involving coherence and population transfers [185], RaPTORS [194], FSRS

[195], and more—can be described using Feynman diagrams.

As an example of how Feynman diagrams can be used to interpret a 2D spectrum

to learn about the system Hamiltonian and its transition dipoles, we consider a third-

order rephasing experiment in the self-diffraction geometry for the two materials that

were mentioned in Sec. 1.6, systems X and Y. The momentum-conserving direction is

ksig = 2kb−ka. In a rephasing experiment, the conjugate field, field Ea, interacts first

with the sample. In both systems, the sample has two excited states with energy levels

ε1 and ε2, but in system X the two transitions are not coupled through a common

ground state. As shown in Fig. 2-4, signals due to pathways i − iv will emerge from

both system X and system Y. However, system Y will also have signals due to the

four pathways that appear as cross peaks, diagrams v − viii.

The spectra can be used to construct the Hamiltonian for each systems. In fact,

this is the purpose of nonlinear spectroscopy: to use the emitted signal field to learn

about the system Hamiltonian. System Y is the case of two coupled transitions,

Ĥ0 =

⎛
⎜⎜⎝

0 0 0

0 ε1 0

0 0 ε2

⎞
⎟⎟⎠ V̂ =

⎛
⎜⎜⎝

0 μ1 μ2

μ∗
1 0 0

μ∗
2 0 0

⎞
⎟⎟⎠ . (2.29)

Dipole operators will be able to induce transitions between eigenstates |1〉 and |2〉
through the perturbatively small elements μi in the off-diagonal components of V .

Meanwhile, the second system also has two transitions, but they are not coupled

through the ground state. This system has a Hamiltonian and a dipole matrix given
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Figure 2-4: Feynman diagram contributions to a two-dimensional spectrum. (a) Possible
signal pathways for a self-diffraction measurement in which field Ea interacts first. As a
conjugate field, it interacts with an arrow pointing to the left. (b) States of the uncoupled
(X) and coupled (Y) systems. (c) A schematic 2D spectrum for the rephasing self-diffraction
experiment. If both transitions are coupled through a common ground state—system Y—
then cross peaks due to pathways v, vi, vii, and viii will appear.
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by

Ĥ0 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0

0 ε1 0 0

0 0 0 0

0 0 0 ε2

⎞
⎟⎟⎟⎟⎟⎠ V̂ =

⎛
⎜⎜⎜⎜⎜⎝

0 μ1 0 0

μ∗
1 0 0 0

0 0 0 μ2

0 0 μ∗
2 0

⎞
⎟⎟⎟⎟⎟⎠ . (2.30)

The block-diagonal nature of this matrix prevents states |1〉 and |2〉 from evolving

with the same phase. This system will have a spectrum without cross peaks, and

any temporal beatings in the signal oscillations that occur are due to macroscopic

polarization interference [71].

The sum-over-states model provides a glimpse into the expected signal contribu-

tions for non-interacting particles. This model allows us to interpret the information

present in the spectrum quickly. It can reveal insights into the energy levels, dephas-

ing times, lifetimes, inhomogeneities, and dipole transitions. Deviations from this

model indicate that interactions are both present in the material and strong enough

to manifest themselves in the signal.

2.3 Bloch equations

The sum-over-states model can successfully reproduce spectra when exciton-exciton

interactions are not present. The Bloch equations can incorporate exciton-exciton

interactions phenomenologically in the coherent optical response, and they reduce to

an equivalent form of the sum-over-states model when the fields are perturbatively

small. This model uses the differential form of the quantum-Liouville equation, and

its solutions require numerical integration of a system of coupled equations.

The complete derivation of these equations is presented in many textbooks [16, 38,

100, 196–198]; here, we outline the derivation and show how various interactions are

incorporated to support the experiments presented in future chapters2. The deriva-

tion can either begin in an electron-hole space that includes the Coulomb correlation

and the dispersion relations explicitly—this leads to an equivalent form of the nonlin-

ear exciton equations called the semiconductor Bloch equations developed in the next

section—or it can begin in the exciton basis. The exciton basis, which we use here,

incorporates the Coulomb correlations implicity. This leads to a phenomenological

treatment of the many-body interactions. The equations derived in the phenomeno-

logical approach are called the modified optical Bloch equations.

2I gratefully acknowledge contributions by Patrick Wen. He simulated the spectra in Chapter
5 through tedious algebraic derivations and careful computer programming. My role was basically
limited to suggesting what signals should be simulated using this model.
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In the exciton basis, the density matrix and the Hamiltonian describe the ground

state and each exciton or multiexciton state just as in the sum-over-states model.

An n-level system has a Hamiltonian with n diagonal matrix elements containing the

energy of each state and its lifetime. The off-diagonal elements contain the electric

field interactions and the dephasing parameters. For example, the four-level Hamil-

tonian given in Eqn. 2.31 is used to represent the ground (g), H exciton (X), HH

biexciton (B), and HHH triexciton (T) states. We use this Hamiltonian in the sim-

ulations in Ch. 5. Optical transitions are allowed between states with ±1 number of

electron-hole pairs composing the states such that

Ĥ(t) = −i

⎡
⎢⎢⎢⎢⎢⎣

0 Δl(t) − iγXg 0 0

Δ∗
l (t) + iγXg εX − iΓX Δl(t) − iγBX 0

0 Δ∗
l (t) + iγBX εB − iΓB Δl(t) − iγTB

0 0 Δ∗
l (t) + iγTB εT − iΓT

⎤
⎥⎥⎥⎥⎥⎦ , (2.31)

where εn and Γn represent the energy and lifetime of state n, respectively, and γmn rep-

resents the dephasing of the off-diagonal matrix elements, where n and m ∈ {X, B, T},
and Δl(t) represents the electric field provided by a laser pulse. The density matrix

and Hamiltonian are inserted into the quantum-Liouville equation, and a set of cou-

pled differential equations are derived. The density matrix for the example four-level

system is given by

ρ =

⎡
⎢⎢⎢⎢⎢⎣

ρgg ρgX ρgB ρgT

ρXg ρXX ρXB ρXT

ρBg ρBX ρBB ρBT

ρTg ρTX ρTB ρTT

⎤
⎥⎥⎥⎥⎥⎦ , (2.32)

where time dependence has been suppressed. Generalized diagonal density matrix

elements derived from the quantum-Liouville equation describe the population dy-

namics,

d

dt
ρaa = −Γaaρaa + i[(ρa,a−1 − ρa+1,a)Δl(t) − (ρa−1,a + ρa,a+1)Δ

∗
l (t)], (2.33)

and off-diagonal elements describe the coherence terms,

d

dt
ρab = −γab + i[ωabρab + (ρaa − ρbb + ρa,b−1 − ρa+1,b)Δl(t)

+(−ρbb + ρaa − ρa−1,b + ρa,b+1Δ
∗
l (t)], (2.34)

where ωab = εa − εb. These coupled equations are not transformed to integrals.

Instead, realistic electric field interactions—rather than impulse functions—can be
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included, and the equations can be solved through numerical integration techniques.

Eqns. 2.33 and 2.34 are the optical Bloch equations.

The wave vector dependence is incorporated using a spatial Fourier expansion

of the matrix elements to determine which components contribute to signals in a

particular direction (the phase-matched direction) [199–202]. Since the equations are

not perturbative, in this discussion ‘order’ refers to the spatial direction, not the

susceptibility. In principle, the wave vector expansion of the density matrix elements

can result in a large number of coupled equations. For example, if two fields were

used, the interaction with the system could be written as

Δl(t) = μ · E−(t)e−i(K−k)·r + μ · E+(t)e−i(K+k)·r, (2.35)

where μ is the dipole moment of the transition and E+(t) and E−(t) are the electric

fields in the K + k and K − k directions, respectively. Describing the wave vectors

of the two fields in this manner allows one to count spatial expansion orders easily.

The density matrix elements are then expanded in terms of these wave vectors,

ρaa =
+m∑

A=−m

ρaa,AeiAk·r (2.36)

and

ρab =
+m∑

A=−m

ρab,Aei(|b−a|K+Ak)·r. (2.37)

In our approach, we truncate A at ±m using the desired spatial expansion order. For

example, in the fifth-order expansion, any term with |A| > 5 is set to zero.

The standard approach is to assume the system begins in only the ground state:

initially only ρgg,0 is nonzero. At first order, the fields will couple ρgg,0 to ρXg,±1, and

so forth for higher orders. This hierarchy of equations is organized with respect to

the order of the field, and lower-order elements act as sources for the higher-order

density matrix elements. Additional field interactions can cause higher-order elements

to act as sources for lower-order elements. A portion of the set of equations for the

four-level system example is shown in Fig. 2-5. This hierarchy represents signals

in positive-k directions where lower-order terms are sources for higher-order terms.

The set of differential equations for signal in negative-k directions is represented by

the same hierarchy except solid (dashed) lines represent multiplication by μ · E−(t)

(μ · E+(t)) and all elements have negative-k indices (for example, ρgX,−1 instead of

ρgX,1). Not shown in Fig. 2-5 are transitions for which higher-order terms are sources
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ρB X ,3
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ρgB ,4
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ρgg,4

ρTX ,4
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ρBB ,4
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Figure 2-5: Hierarchy of differential equations for a portion of the fifth-order signal in Ch. 5.
Lower-order terms act as source terms for higher-order terms. Solid (dashed) lines represent
multiplication of lower order terms with μ · E+(t) (μ · E−(t)) before addition (black lines)
or subtraction (red lines) to differential equation of higher order terms. Some transitions—
higher-order terms leading to lower-order terms—are not shown. For example, ρXg,1 can
lead to terms ρXX,2 (shown) and ρXX,0 (not shown).

for lower-order terms. Representative equations for the fifth-order example include

d

dt
ρXg,5 = [−γXg +iωXg]ρXg,5+iμ·[−E−(t)·ρBg,4−E∗

+(t)·ρgg,4+E∗
+(t)·ρXX,4], (2.38)

d

dt
ρBX,5 = [−γBX + iωBX ]ρBX,5 + iμ · [E∗

−(t) · ρBg,4

−E−(t) · ρTX,4 − E∗
+(t) · ρXX,4 + E∗

+(t) · ρBB,4], (2.39)

d

dt
ρXg,3 = [−γXg + iωXg]ρXg,3 + iμ · [E+(t) · ρBg,4 − E−(t) · ρBg,2

+E∗
−(t) · (ρXX,4 − ρgg,4) + E∗

+(t) · (ρXX,2 − ρgg,2)], (2.40)

d

dt
ρgX,1 = [−γgX + iωgX ]ρgX,1 + iμ · [−E+(t) · ρBg,2 − E−(t) · ρBg,0

+E∗
−(t) · (ρXX,2 − ρgg,2) + E∗

+(t) · (ρXX,0 − ρgg,0)], (2.41)

and

d

dt
ρTB,5 = [−γTB + iωTB]ρTB,5 + iμ · [E∗

−(t) · ρTX,4 − μ · E∗
+(t) · ρBB,4]. (2.42)
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The terms ρBg,0 and ρXX,0 in Eqn. 2.41 are not illustrated in Fig. 2-5.

Many-body interactions such LFE, EID, and EIS can be incorporated by inserting

phenomenological terms. Although we do not use the ubiquitous but nebulous term,

the signals these terms produced were often called interaction-induced effects [38, 203].

Local fields act as density-dependent source terms that modify the field interaction,

and they are included by introducing a new electric field, Δ(t), that includes the

original electric field, Δl(t), and the LFE, as given by

Δ(t) = Δl(t) + ΔLFE(t), (2.43)

where

ΔLFE(t) = μNl[μρXg,−1(t)e
−i(K−k)·r + μρXg,+1(t)e

−i(K+k)·r]. (2.44)

We neglect terms such as ρBX,±1, which, although they have the appropriate spatial

order to be included in the total LFE source, they are generated by multiple field inter-

actions. The density of excitons in the system is given by N . The excitation-induced

effects are modifications to the dephasing rate, γ′, and frequency, ω′. Including all

three effects results in equations of motion with the following forms. Coherence terms

have the form

d

dt

∑
A

ρab,A = [−(γab + γ′
abN

∑
A

ρaa,A) + i(ωab + ω′
abN

∑
A

ρaa,A)]
∑
A

ρab,A

+i(
∑
A

ρaa,A +
∑
A

ρab,A)Δ(t), (2.45)

and population terms have the form

d

dt

∑
A

ρaa,A = −∑
A

Γaaρaa,A + i
∑
A

ρab,AΔ(t), (2.46)

where we can collect terms having the same spatial expansion order (given by the

value of A) and equate them. Two elements from our fifth-order example are the

complete equations for ρXg,5 and ρgX,1,

d

dt
ρXg,5 = [−γXg + iωXg]ρXg,5 + iμ · [−E−(t) · ρBg,4 − E∗

+(t) · ρgg,4

+E∗
+(t) · ρXX,4] + (γ′ + iω′)N [ρXg,1(ρXX,4 + ρBB,4 + ρTT,4)

+ρXg,3(ρXX,2 + ρBB,2 + ρTT,2)

+ρXg,5(ρXX,0 + ρBB,0 + ρTT,0)], (2.47)
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and

d

dt
ρgX,1 = [−γgX + iωgX ]ρgX,1 + iμ · [−E+(t) · ρBg,2 − E−(t) · ρBg,0

+E∗
−(t) · (ρXX,2 − ρgg,2) + E∗

+(t) · (ρXX,0 − ρgg,0)]

+(γ′ + iω′)N [ρgX,−3(ρXX,4 + ρBB,4 + ρTT,4)

+ρgX,−1(ρXX,2 + ρBB,2 + ρTT,2)

+ρgX,1(ρXX,0 + ρBB,0 + ρTT,0)

+ρgX,3(ρXX,−2 + ρBB,−2 + ρTT,−2)

+ρgX,5(ρXX,−4 + ρBB,−4 + ρTT,−4)]. (2.48)

In the equation for ρgX,1, Eqn. 2.48, there are no terms in the ρgX,−5 direction

because—even though the resulting signal is fifth-order—such terms would require

sixth-order populations, ρXX,6 for example, which are excluded from our spatial ex-

pansion. Similarly, there are no terms due to ρXg,−1 in Eqn. 2.47.

The simplified equations, Eqns. 2.45 and 2.46, show that the EID and EIS terms

provide density-dependent modifications to the real and imaginary parts, respectively,

of coherences.

2.4 Nonlinear exciton equations

The nonlinear exciton equations [204–208]—identical to the dynamics controlled trun-

cation formalism [200, 201] and related to the semiconductor Bloch equations [197]—

have been extended recently to simulate 2D FTOPT experiments of excitonic many-

body interactions in semiconductor nanostructures [147, 198, 209–211].

This model does not rediagonalize the Hamiltonian into exciton states like the

previous two models. Instead, it assumes the sample is a linear chain of oscillators,

and each oscillator can couple to its neighbors, as illustrated in Fig. 2-6. No additional

levels or phenomenological many-body terms are assumed. The model uses a multi-

band, one-dimensional tight-binding Hamiltonian that captures the possible electron

and hole combinations of the system, and the linear chain has a finite number of

sites with periodic boundary conditions. Because calculating a 2D FTOPT spectrum

requires significant computation time using this model, the number of sites is reduced

to the minimum number required to maintain the convergence of the exciton energies;

current simulations of three-band systems (electrons, heavy-holes, and light-holes) use

ten sites.
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Figure 2-6: In the nonlinear exciton equations, a photon can excite an electron-hole pair on
each site, i, and sites can couple to nearest neighbors, i ± 1, with a strength J .

The total Hamiltonian is composed of three terms

Ĥ = Ĥ0 + ĤC + ĤL. (2.49)

The light-matter interaction is given by

ĤL = −E(t) · P̂, (2.50)

where the electric field is time-dependent, not a δ-function, and the interband polar-

ization operator, P̂, has a familiar form. It depends on the dipole moment connecting

the conduction band, e, to the valence band, h, through excitation on sites i and j,

as given by

P̂ =
∑
ijeh

[μhe
ij phe

ij + H.C.]. (2.51)

The polarization operator is given by

phe
ij = 〈dh

i c
e
j〉. (2.52)

The interband transition dipoles μhe
ij are governed by two rules. The first is the set

of selection rules of the system. The second is that light can only create or destroy

an electron and hole that share a site, so, for an allowed transition between valence

band h and conduction band e,

μhe
ij ∝ δij . (2.53)

The free-band Hamiltonian and the coupling between different sites is given by

H0 =
∑
ije

T e
ijc

e†
i ce

j +
∑
ijh

T h
ijd

h†
i dh

j , (2.54)

where ce†
i (ce

i ) represents the creation (destruction) operators of electrons in site i from

the conduction band e, and dh†
i (dh

i ) represent the same operators for the holes in the

valence band h. The diagonal elements T eh
i=j correspond to site energies for each
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electron (in the conduction band) or hole (in the valence band). The off-diagonal

elements T eh
i�=j represent couplings between the different sites, labeled J in Fig. 2-6.

The nearest-neighbor tight-binding approximation for electronic coupling is typically

used: T eh
ij = 0 for |i − j| > 1. The Coulomb interaction term is given by

ĤC =
1

2

∑
ij

(∑
e′

ce′†
i ce′

i −∑
h′

dh′†
i dh′

i

)
Vij

(∑
e

ce†
j ce

j −
∑
h

dh†
j dh

j

)
, (2.55)

where the matrix element Vij of the Coulomb potential energy has its 1
r

form. In the

model, this is given by

Vij = U0
d

d|i− j| + a0
, (2.56)

where U0 is an interaction strength, a0 is a spatial cutoff, and d is the lattice constant

for the material. The interaction term Vij describes the Coulombic attraction and

repulsion between particles at sites i and j. Alternatively, if the derivation were

performed in a momentum basis to derive the related semiconductor Bloch equations,

this term would describe the Coulomb forces between particles in different momentum

states. Regardless, the Coulomb term has two primary effects: it renormalizes the

electron and hole energies—it makes excitons!—and it can change the interaction

strength of the field.

Inserting only the site energy (Ĥ0) and light-matter interaction (ĤL) portions of

the Hamiltonian into the equations of motion, we obtain an equation involving only

interband quantities,

−ih̄
d

dt
phe

ij = −∑
n

T e
jnphe

in −∑
m

T h
mip

he
mj + E(t) ·

[
(μhe

ij )∗ (2.57)

− ∑
abh′e′

[
(μhe′

ib )∗(ph′e′
ab )∗ph′e

aj + (μh′e
bj )∗(ph′e′

ba )∗phe′
ia

]]
, (2.58)

that can be written in an abbreviated manner

−ih̄
d

dt
p = −h̄ωp + μ∗E − μ∗Ep∗p. (2.59)

This equation has the same structure as the optical Bloch equations, Eqn. 2.34.

The h̄ωp term represents the single-particle energies, and the other two terms are

the source, μ∗E, and its phase-space filling correction, (1 − p∗p). In this limit, the

sum-over-states model parallels the nonlinear exciton equations [212].

Unfortunately, including the Coulomb portion of the Hamiltonian (ĤC) to capture

all of the electron-hole interactions results in an infinite hierarchy of coupled equations
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of motion. This set of equations is truncated based on the same spatial Fourier

expansion as was done for the Bloch equations [200–202, 213]. To first order in the

field Ea with wave vector ka and an exciton dephasing constant τX , the polarization

is given by

−
(

ih̄ +
i

τX

)
d

dt
p

he[ka]
ij = −∑

n

T e
jnp

he[ka]
in −∑

m

T h
mip

he[ka]
mj (2.60)

+Vijp
he[ka]
ij + Ea(t) · (μhe

ij )∗.

The trace of the density matrix is the polarization,

P[ka](t) =
∑
ijhe

μhe
ij p

he[ka]
ij (t), (2.61)

and the computation and its result are presented in Appendix B. The signal is

computed using an adaptive Runge-Kutta algorithm that estimates the error to adjust

the step size as needed.

The equations can also be truncated at third order. In a simulation of the ‘self-

diffraction’ measurement, there would be two beams, one with wave vector ka and

the other with wave vector kb. The first-order polarizations for the two input beams

given by Eqn. 2.60 are source terms for the higher-order polarizations. Here, the

correlated two-exciton amplitudes are defined by

Bh′e′he
lkij ≡ 〈dh′

l ce′
k dh

i c
e
j〉 + 〈ph′e

lj 〉〈phe′
ik 〉 − 〈ph′e′

lk 〉〈phe
ij 〉. (2.62)

The following equations of motion govern the time-dependence of the polarization,

where the exciton and two-exciton dephasing times are described by τX and τXX ,

respectively,

−
(

ih̄ +
i

τX

)
d

dt
p

he[ksig]
ij = −∑

n

T e
jnp

he[ksig]
in −∑

m

T h
mip

he[ksig]
mj + Vijp

he[ksig]
ij (2.63)

+
∑

klh′e′
(Vkj − Vki − Vlj + Vli)

[
(p

h′e′[ka]
lk )∗ph′e[kb]

lj p
he′[kb]
ik

−(p
h′e′[ka]
lk )∗ph′e′[kb]

lk p
he[kb]
ij − (p

h′e′[ka]
lk )∗Bh′e′he

lkij

]

+E(t) ·
[
(μhe

ij )∗ − ∑
klh′e′

[
(μhe′

il )∗(ph′e′[ka]
kl )∗ph′e[kb]

kj

−(μh′e
lj )∗(ph′e′[ka]

lk )∗phe′[kb]
ik

]]
,
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and

−
(
ih̄ +

i

τXX

)
d

dt
Bh′e′he

lkij = −∑
m

(
T e

jmBh′e′he
lkim + T h

miB
h′e′he
lkmj + T e

kmBh′e′he
lmij + T h

mlB
h′e′he
mkij

)

+(Vlk + Vlj + Vik + Vij − Vli − Vkj)B
h′e′he
lkij (2.64)

−(Vlk + Vij − Vli − Vkj)p
he′[kb]
ik p

h′e[kb]
lj

+(Vik + Vlj − Vli − Vkj)p
h′e′[kb]
lk p

he[kb]
ij ,

The meaning of conjugate and nonconjugate fields is clear in the above equations.

As the conjugate field in the self-diffraction measurement, polarizations due to field

Ea are conjugated, (p
he[ka]
ij )∗, whereas polarizations due to field Eb are not, p

he[kb]
ij .

Calculating third-order spectra incorporating the full equations presented here for a

three-band model with co-linear polarization including the full Coulomb coupling us-

ing ten sites takes approximately one month of computation time on a 64 bit Opteron

processor [210]. Fifth-order expressions involving full six-particle correlations would

take much longer because the computations would scale as the sixth power of the

number of sites.

The third-order equations above can be written in abbreviated form as

−ih̄
d

dt
p = −h̄ωxp + V p∗pp + V p∗B + μ∗E − μ∗Ep∗p, (2.65)

and

−ih̄
d

dt
B = −h̄ω2xB + V pp. (2.66)

The abbreviated form of the emitted field equation has exciton energies h̄ωx, two-

exciton energies h̄ω2x, phase-space filling (also called Pauli blocking) term μ∗Ep∗p,

first-order many-body Coulomb contribution V p∗pp, and many-body Coulomb corre-

lation V p∗B.

The above equations are rather complicated. Nevertheless, we can understand

some of the underlying physics qualitatively by examining their forms. First we

discuss the consequences of beam polarization. In our sample, which we discuss at

length in the next section, circularly polarized light allows only specific transitions

between the conduction and valence bands. The consequence of the selection rules

is that some transitions μhe
ij are zero even when i = j. If this is the case, the value

of p
he[ka,b]
ij (t) will be zero for all time. If the third-order signal is desired, this first-

order polarization is inserted into the equation for B, causing either the third or

fourth lines of Eqn. 2.64 to be zero. Since the equation governing B is a differential

equation, this changes the frequency of the two-quantum oscillation. In this manner,
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cross-polarized fields that cause biexciton–ground-state coherences reduce the rate at

which B changes, reducing the value of the two-quantum frequency.

We can extract at least one more important physical insight from the equations.

The V p∗B term results in two-exciton correlations that are weighted by the value of

V p∗. Similarily, in Eqn. 2.63, the two-exciton dynamics are weighted in the sum by a

conjugate first-order polarization, −(p
h′e′[ka]
lk )∗ and the Coulomb coupling factors Vab.

As we will see, 2D FTOPT SIII scans measure the B dynamics along the two-quantun

dimension and the V p∗B dynamics along the emission dimension, and the value of

the biexciton binding energy can be altered in the emission dimension.

One approximation method used to decrease the computation time is the Hartree-

Fock approximation. This method supposes that the Coulomb correlation terms (any

term involving B) is small. Mathematically, the four-particle correlation function is

reduced to a product of two two-particle correlation functions,

〈dh′
l ce′

k dh
i c

e
j〉 ≈ ph′e′

lk phe
ij − ph′e

lj phe′
ik = 〈dh′

l ce′
k 〉〈dh

i c
e
j〉 − 〈dh′

l ce
j〉〈dh

i c
e′
k 〉. (2.67)

This approximation eliminates the B term and doing so decreases computation times

dramatically. Unfortunately, simulations under this approximation reproduce 2D

FTOPT experiments poorly [41, 143, 209].

The Pauli-blocking approximation removes both the four-particle correlations, B,

and the first-order Coulomb terms, V p∗pp. This approximation only incorporates the

μEp∗p term, which describes how the number of allowed transitions to the excited

states decreases as the excited states become populated. This term is important in

discrete systems where the Pauli exclusion principle plays a large role in the system

energetics, and in extended systems at high densities where absorption saturation

may occur.

2.5 Material properties of GaAs

The nonlinear spectroscopy methodology described in this chapter can be—and has

been—used to study a wide variety of samples in which electronic correlations are

present. This thesis applies these techniques to GaAs. Therefore, in this section

we detail background information about the electronic properties of our sample, the

GaAs quantum well.

Although coherent exciton dynamics and correlations have been studied in a many

materials—ZnO [214, 215], ZnSe [216], CuCl [217], and more—GaAs remains favored

because the interactions are strong enough to induce exciton-exciton correlations
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Table 2.2: Properties of GaAs
electron effective mass (m∗

e) 0.06 me
a

heavy hole effective mass (m∗
H) 0.5 me

light hole effective mass (m∗
L) 0.08 me

dielectric constant 12
lattice constant 5.5 Å
exciton Bohr radius 10 nm
crystal structure zinc blende
coordination geometry tetrahedral

aThe mass of a free electron (me) is 9.1 × 10−31 Kg.

but weak enough to allow long coherence times. For example, biexciton coherences

in GaAs remain coherent for about 2 ps, whereas biexciton coherences in ZnO de-

phase in about 100 fs. Many semiconductor nanostructures, including GaAs quantum

wells, are grown using molecular beam epitaxy, a deposition technique developed in

the 1960s [218]. Commercial devices often incorporate GaAs because it is a direct-

gap semiconductor (unlike silicon) with excellent optoelectronic properties, and it

can be nanofabricated. It is used in a range of applications including photovoltaics,

high-performance transistors, LEDs, and solid state lasers [219]. Thus, many of its

properties have been measured [220, 221]; several are listed in Table 2.2. Notably,

GaAs has a high dielectric constant and a large exciton Bohr radius. The effective

masses of the light-holes and conduction-band electrons are nearly equal, indicating

that their spatial distributions are roughly equivalent. On the other hand, the heavy-

hole effective mass is much larger. Its wavefunction is more strongly modulated by

the nuclei.

The electrons and holes that compose the excitons originate in the underlying

atomic orbitals of the Ga and As atoms. Isolated Ga atoms have three valence

electrons; isolated As atoms have five valence electrons. Fig. 2-7(a) illustrates the

relative energy levels of the atomic orbitals for each atom and hypothetical ‘molecular’

orbitals created when viewing GaAs as a diatomic molecule. This representation

is useful for determining the selection rules of the solid because the valence band

wave functions in GaAs have angular momentum properties similar to p-orbital wave

functions, and similarily the conduction band wave functions have angular momentum

properties similar to s-orbital wave functions3. The eight valence electrons fill the

lowest molecular orbitals, and the incident light promotes an electron from a π orbital

3For more details, see Sec. 6.1.3 in Ref. [38], Sec. 2.6.2 in Ref. [25], and Ch. 19 in Ref. [17].
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Figure 2-7: The III-V semiconductor GaAs. (a) Underlying atomic orbitals of the solid.
Ga atoms have three valence electrons and As atoms have five. The eight electrons fill the
lowest-occupied s-like (σ) and p-like (π) ‘molecular’ orbitals. The incident light promotes
the electron from a π orbital to a σ∗ orbital. These orbitals are used to understand the
selection rules of the valence and conduction bands of the semiconductor. (b) Relevant
bands of GaAs. The electrons reside in the conduction band (black) and the holes (H and
L) reside in the valence bands (red and blue, respectively).

to a σ∗ orbital. These molecular orbitals become related the dispersion curves in the

band diagram shown in Fig. 2-7(b) when many atoms form a solid.

To determine the optical selection rules, we must consider the total angular mo-

mentum of each particle. The total angular momentum (J) is the sum of the particle

spin (S) and the orbital angular momentum (L) vectors,

J = L + S. (2.68)

Electrons are spin one-half particles with |S| = 1
2
. Holes can be viewed as particles

with spin |S| = 1
2
. The orbital angular momentum is less straightforward. An excited

electron resides in a conduction band that has angular momentum properties similar

to a σ molecular orbital with |Lσ| = 0. Thus the total angular momentum of the

electron is one-half, |Je| = 1
2
. A hole resides in a valence band that has angular

momentum properties similar to a π molecular orbital with |Lπ| ∈ {0, 1}, and thus

the total angular momentum of a hole can have two values, |Jh| ∈ {1
2
, 3

2
}. Holes

with |Jh| = 1
2

reside in the so-called ‘split-off’ band. At the band edge (k = 0), they

are split by about 0.5 eV from holes with |Jh| = 3
2
. This band is not depicted in

Fig. 2-7(b) and it will not be considered further because excitations from it to the

conduction band are not resonant with the laser spectrum. This leaves two possible

total angular momentum values for an electron, me
j ∈ {±1

2
}, and four possible values

for a hole, mh
j ∈ {±1

2
,±3

2
}. In our quantum well sample, the confinement stress
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Figure 2-8: Optical selection rules for electron excitation. Quantum confinement splits
the two valence bands by about 6 meV. Solid (dashed) lines indicate left (right) polarized
light. (a) In the band representation, a photon can promote an electron from one of the
four (two pairs of degenerate) valence bands to one of the two (degenerate) conduction
bands. This is often called the electron-hole representation because after optical excitation,
electrons reside in the conduction band and holes reside in the valence band with the given
angular momemtum values. (b) In this frequently used ‘excitonic’ representation, optical
fields couple the four exciton states to the ground state.

separates the mh
j = ±1

2
band about 6 meV from the mh

j = ±3
2

band.

The allowed optical transitions between the bands are shown in Fig. 2-8(a), where

each particle is denoted by its angular momentum value. Photons promote electrons

from the valence bands to the conduction bands. Thus this is called the ‘electron-hole’

representation. Spectroscopists often change the representation to the ‘quasi-particle’

or ‘excitonic’ view, illustrated in Fig. 2-8(b). In this representation, light can cause

excitation from the ground state to any of the four exciton states as illustrated: spin-

up heavy-hole, |↑〉, spin-down heavy-hole, |↓〉, spin-up light-hole, |↑〉, and spin-down

light-hole, |↓〉. Each type of exciton is denoted in Fig. 2-8(b) by the {electron,

hole} angular momentum values. There are two H excitons, { ± 1
2
,±3

2
} and two

L excitons, { ∓ 1
2
,±1

2
}. The polarization and energy of the light can be used to

excite specific electron-hole combinations. Crucially, circularly polarized light excites

H and L excitons of different spin. For example, a σ+ photon will create a spin-up

H exciton, |↑〉, but a spin-down L exciton, |↓〉. The electron-hole representation is

important because it illustrates that co-circular polarized fields create excitons that

are not coupled through a common ground state; the excitons are independent two-

level systems. Strong exciton-exciton interactions couple the two independent systems

[77, 78, 143, 144]. Thus, although we use the excitonic representation throughout the

thesis, it is important to note that a better representation would be to have two ground

states: one for right-circular excitation and the other for left-circular excitation. We

return to this discussion in Sec. 4.4.

The spectra presented in the following chapters will allow us to extract the prop-

erties of excitons and multiexcitons. Fig. 2-9 shows the relative energy levels of each
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⎥0〉     0 eV

⎥1〉 ~ 1.5 eV

⎥2〉 ~ 3.0 eV

⎥3〉 ~ 4.5 eV

⎥4〉 ~ 6.0 eV

Figure 2-9: GaAs exciton and multiexciton states sought or observed in this work. The
ladder of exciton states illustrates the ground state, |0〉, the two single exciton states, |1〉,
the three biexciton states, |2〉, the four triexciton states, |3〉, and in principle the five
quadexciton states, |4〉. The approximate energy of each set of levels is listed. The binding
energies of the excitons are about 10 meV [222], and the binding energies of the multiexcitons
will be shown to be about 1–2 meV. A typical spectrum of our laser field is indicated by
the red line.

rung of the multiexciton ladder that was explored in our measurements. At each rung

of the ladder, there are more possible bound multiexciton correlations formed by any

combination of H and L exciton constituents; there are three possible biexcitons, four

possible triexcitons, and five possible quadexcitons.

2.6 Summary

This chapter described how intense input electric fields provided by laser beams can

interact with a sample to induce a nonlinear polarization which emits as the signal

field. The nonlinear polarization was cast in the density matrix formalism where time

evolution is governed by the quantum-Liouville equation.

Three treatments of the density matrix were described. Two methods—the sum-

over-states and the Bloch equations—involved rediagonalizing the Hamiltonian into

a set of levels that implicity include the Coulomb interactions as excitons and multi-

excitons. The sum-over-states model includes an additional approximation about the

form of the electric field so that the two-dimensional spectrum can be calculated with

ease by drawing a set of easily interpretable Feynman diagrams. The nonlinear exci-

ton equation approach requires time-consuming computations, but it can incorporate

the Coulomb couplings between the charged particles in the system explicity without

rediagonalizing the Hamiltonian. This method has resulted in calculated spectra that

fit the experimental results well.
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Chapter 3

Experimental Methods

This chapter begins with an orientation to femtosecond pulse shaping and its use in

multidimensional spectroscopy. We then describe the construction, alignment, and

calibration of the instrument used to make the measurements, the Coherent Optical

Laser BEam Recombination Technique (COLBERT) spectrometer. We discuss the

basic principles of beam shaping and pulse shaping. The measurement procedure is

then outlined, and we conclude by showing how to extract a complex spectrum from

the measured data.

3.1 Shaping femtosecond pulses

While the initial goal in the late 1980s in the field of femtochemistry was to monitor

the transition states involved in chemical reactions [223, 224], it was soon recognized

that the products of a reaction could be influenced by using carefully constructed

laser pulses to direct the flow of electronic or vibrational energy. Early coherent

control experiments were performed in the early 1990s [225–228], and the field has

been reviewed many times [229–233]. One ultimate goal in this field is to control

a chemical reaction to such an extent that one target product is produced above

all other possible products; polarization, amplitude, and phase profiles of ultrafast

pulses can be manipulated to reach the target product. Unfortunately, it is often

hopeless to predict the optical waveform required to enhance or suppress a particular

chemical product because intramolecular vibrational redistribution processes make

the Hamiltonian completely intractable to theoretical analysis. Thus, instead of at-

tempting to compute the desired waveform, iterative algorithms are often used in

feedback-controlled loops in the laboratory [234, 235]. There are at least fifty demon-

strations of coherent control in this fashion. These experiments often involve spatial

light modulators (SLMs) to adjust the waveform characteristics.
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Pulse shaping work in the Nelson group had focused on using a two-dimensional

liquid crystal SLM to control collective lattice vibrations that travel at light-like

speeds, or phonon-polaritons [236]. Recently, however, the group showed that pulse

shaping with this device could be used to measure multidimensional FTOPT spectra

[129, 140]. Pulse shapers have also been used in 2D IR measurements [237–242]. Basic

pulse shaping involves separating the frequency components of an ultrafast pulse;

manipulating the phase or amplitude, or both, of each frequency using an SLM; and

then recombining the separated frequency components to form the modified ultrafast

pulse. Canonical pulse shapes include time delays, phase shifts, pulse trains, and

chirps.

Multidimensional FTOPT measurements involve nonlinear signals generated by

a series of femtosecond pulses. During the time periods between field interactions,

coherent superpositions of system eigenstates can evolve. Measuring coherent oscil-

lations requires optical phase stability among most or all of the pulses. This requires

careful instrumentation at optical wavelengths when the pulses are in different laser

beams. Unlike the relatively standardized equipment of 2D NMR, multidimensional

FTOPT measurements have been performed using a variety of approaches to stabilize

the relative optical phases between pulses [128, 133–135, 137, 156, 157]. Most have

involved a subset of the following optics: beam splitters, diffractive optics, wedges,

and translation stages. Some use phase cancellation approaches to stabilize the device

passively for a subset of possible scans [128, 133, 137, 156, 157]. Others can measure

a variety of third-order signals using actively stabilized translation stages [135] or

passively stabilized movable wedges [134]. In general, a major challenge arises from

the randomization of the optical phase of a pulse each time it is delayed through

movement of a mechanical delay stage or insertion of a variable thickness wedge in

its path.

Our device [150–152] is distinct from the others in that it is versatile, has full

passive phase stability, and has no moving parts. As we will see, it can also acco-

modate higher-order measurements with little additional effort, unlike other devices.

At the heart of the instrument are twin 2D SLMs, one for 2D spatial beam shaping

and the other for spatiotemporal pulse shaping. The COLBERT spectrometer makes

the diverse array of 2D FTOPT measurements presented in the following chapters

possible.

The number of possible nonlinear optical measurements is large. There are four

essential parameters that can be used to organize most nonlinear optical experiments:

the beam geometry, the pulse timing sequence, the spectral content of each pulse, and

the optical polarization of each beam. The beam geometry sets the phase-matching
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conditions, the number of field interactions per beam, and which are the conjugate

and nonconjugate beams. The pulse time ordering determines whether a scan is

rephasing or nonrephasing, and how many quanta are involved. The spectral content

and polarization scheme describe which resonances are excited and in what ways

the excitations can couple. In the COLBERT spectrometer, a spatial beam shaper

sets the pulse geometry, a spatiotemporal pulse shaper changes the time orderings,

individual waveplates set the beam polarizations, and the laser can be adjusted to

vary the spectral content.

3.2 COLBERT construction

A Ti:sapphire oscillator was adjusted to produce a collimated beam that was 2 mm in

diameter containing near-transform-limited 90 fs pulses (intensity FWHM, measured

with FROG). The pulse spectra were centered at 806 nm, each pulse had an energy of

about 5 nJ, and the laser repetition rate was 92.5 MHz. The pulse duration and center

wavelength vary from measurement to measurement as we isolate specific interactions.

We indicate the values of the parameters for each experiment.

A block diagram of the apparatus is illustrated in Fig. 3-1(a). The laser beam is

first converted to a set of beams in a user-defined geometric pattern by the spatial

beam shaper. The temporal waveform of the femtosecond pulse in each beam is set

by the spatiotemporal pulse shaper. The pulses in all the beams are then focused

into the sample and the radiated signal is measured by a spectrometer.

A more detailed schematic is presented in Fig. 3-1(b). The spatial beam shaper,

illustrated in the blue box, is composed of three optics: a 150 cm focal length spherical

lens (L1), a 2D spatial light modulator (SLM 1), and a second 150 cm spherical lens

(L2). Both the beam shaper and the pulse shaper used SLMs (Hamamatsu X8267)

with 768 by 768 pixels; the size of each pixel was 24 by 24 microns. The long focal

length of lens L1 creates a focused spot with a large beam waist (∼1 mm) at the SLM

1 surface which illuminates many pixels. This reduces the likelihood of damage, keeps

the SLM in its linear operating range [243], and defines the specified phase pattern—

which includes multiple periodic features to create the desired beams by diffraction

of the incident beam—over many periods for each feature. The pattern encoded into

SLM 1 is a pixelated version of the Fourier transform of the desired output geometry.

In Sec. 3.5 we detail the consequences of pixelation. Any extra diffraction orders are

blocked, and lens L2 collimates the beams into the desired arrangement.

The spatiotemporal pulse shaper is illustrated in the green box of Fig. 3-1(b). It is

improved from previous designs [99, 140, 145, 148] for a fourfold increase in efficiency
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Figure 3-1: Experimental apparatus for coherent multidimensional spectroscopy. (a) The
apparatus contains four essential components: a laser producing femtosecond pulses (red
box), a spatial beam shaper producing a user-defined 2D geometrical arrangement of beams
(blue box), a spatiotemporal pulse shaper capable of independently delaying each pulse in
the set of beams (green box), and finally a signal detector which in this case is a spec-
trometer with a CCD array (grey box). The three-beam geometry is shown for clarity. For
additional clarity, the final lens which collimates the signal and LO and the waveplates used
to control the polarization of each beam are not shown. (b) A more detailed depiction of the
apparatus following the same color-coding scheme as above but illustrating a four-beam,
Y-shaped geometry. The spatial beam shaper is composed of two lenses and a 2D spatial
light modulator (SLM 1). The spatiotemporal pulse shaper imparts delays and phase shifts
to the pulses in the beams by constructing sawtooth phase grating patterns on the second
2D SLM (SLM 2). After lens L5, the beams have the geometry defined by SLM 1 with
relative pulse timings and phases (or more general specified amplitude and phase profiles)
defined by SLM 2. The signal is generated in the same direction as the LO; this beam is
isolated by the iris. Their interference fringes are read by a CCD detector after diffraction
by the grating in the spectrometer (G2). (c) The beam geometry at three points in the
pulse shaper. The top arrangement illustrates propagation throughout most of the device.
The middle is the beam arrangement at the plane of the cylindrical lens (CL) in the pulse
shaper. The bottom arrangement shows how the beams are refocused on the SLM 2 surface
so that a single frequency encounters one vertical column of pixels, regardless of which beam
is considered. (d) The SLM 2 plane is focused by lens L4 to the plane of the pick-off mirror
(M), which is adjusted to send only the desired first-order diffraction toward the sample.
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by eliminating a dual-use beam splitter. The beams produced by the beam shaper

are first focused and then recollimated by a pair of 75 cm focal length spherical lenses

(L3 and L4). After recollimation, each beam reaches a vertically distinct region of

a 1400 groove/mm diffraction grating (G). The frequency components are dispersed

horizontally by the grating and focused by a cylindrical lens (CL) to vertically dis-

tinct bands across the surface of SLM 2, placed at the Fourier plane of the grating.

The focal length of the CL depends on the pulse bandwidth. In normal operation,

it ranges between 10 cm and 25 cm, and we often use a 12.5 cm focal length lens;

in that case the distance between L4 and G is 50 cm. The beam geometry at three

locations in the apparatus is shown in Fig. 3-1(c). The pulse shaper operates in

diffraction mode [244, 245], which is shown in Fig 3-1(d) and detailed in Sec. 3.6.

The shaped frequency components are recombined at the grating to produce the tem-

porally shaped fields. The small vertical wave vector shifts—about 0.016◦—imparted

by the vertical sawtooth phase pattern of SLM 2 are converted by lens L4 to vertical

spatial shifts—about 2 mm—as shown in Fig. 3-1(d). All orders of diffraction from

SLM 2 are blocked except zero-order, which reflects back through the setup, and first-

order, which is the desired order. The shaped pulses in the first-order diffraction are

separated from the reflected input beams by a pick-off mirror (M), which redirects

the diffracted beams towards a 100 cm focal length lens (L5). Lenses L3, L4, and L5

all share a common focal plane in which M is placed.

An optical isolator (Optics For Research O-5BB-800-HP) placed at the output of

the laser before lens L1 prevents the zero-order diffraction that reflects back through

the setup from disturbing the laser. The longer focal length of lens L5 increases

the size of the geometry, allowing quarter-wave plates (Tower Optical AO12.7DZ 1/4

0800) to be placed in each beam without blocking the other beams. A large-diameter

quarter-wave plate common to all of the beams was also used (Tower Optical AO25DZ

1/4 0800). This wave plate combination allowed us to select any required polarization

configuration without inserting or removing any optics. We often place reflective

neutral density filters between lenses L5 and L6 to attentuate the beams. Between

these lenses, the pulses have the beam geometry defined by SLM 1 with relative

timings and phases defined by SLM 2. The local oscillator beam—whose purpose is

to superpose with the signal field generated by the other beams—is attenuated by

a factor of 10−4 with a reflective neutral density filter (Thorlabs ND40A). The filter

was etched carefully using a strong acid so that all beams propagate through the glass

but only the LO is attenuated by the reflective coating. The beams are then focused

by a 15 cm focal length spherical lens (L6) to a spot size with a radius of 40 microns

to generate the phase-matched signal. The focused area was about 5 × 10−5 cm2.
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The sample consisted of ten periods of 10 nm thick GaAs separated by 10 nm

Al0.3Ga0.7As barriers, mounted on a sapphire plate, which was held in a cold-finger

cyrostat (Janis ST100, LakeShore 331 temperature controller) below 10 K. Not shown

in Fig. 3-1(b) are a 15 cm focal length lens to collimate the signal and several extra

routing mirrors. The signal is routed to the CCD camera (Princeton Instruments

PIXIS 100) attached to an imaging spectrometer (Acton SpectraPro 300i). The spec-

trometer was calibrated using the sharp emission lines of an Ar lamp (Thorlabs). All

eight lenses are two inches in diameter and were anti-reflective coated at 800 nm for

greater efficiency. In conjuction with the optical isolator, the anti-reflective coatings

prevented reflections from destabilizing the oscillator.

The device operates on the principle of relay imaging; any pulse-front tilt (spatial

chirp) imparted to the optical pulses by SLM 1 is eliminated at the sample if the

beams are imaged properly from their point of generation to the sample [246]. This

means that the distance between each lens pair is such that the phase pattern applied

by SLM 1 is reconstructed at the sample where the beams overlap spatially and

temporally. Since higher-order diffractions from the beam shaper are blocked, it will

not be an identical reconstruction but instead will only include the fundamental wave

vector components encoded into SLM 1. For proper imaging, the distance between

the last lens of the beam shaper (L2) and the first lens of the pulse shaper (L3) is

the sum of their focal lengths, which in this case is 225 cm. Similarily, the distance

between L5 and L6 is 115 cm. The total distance traveled by the pulses from lens L1

to the sample is 11.3 m. Including the distance from the sample to the spectrometer,

the total path length is about 12.5 m. Although the distance is long, the relay imaging

nature of the setup allows the beam pointing stability to remain high. Using different

imaging ratios throughout the setup, particularly different lenses L2 and L3, could

allow the path length to be reduced.

Because all the beam traverse the same set of optics, the optical phase stability is

high. It was measured to be λ/147 over twelve minutes and λ/88 over fourteen hours,

as depicted by the black line in Fig. 3-2. These times roughly correspond to the

amount of time needed to acquire 2D and 3D spectra, respectively. We increased the

phase stability (to λ/219 short-term and λ/157 long-term) by placing the laser on the

same optical table as the spectrometer; they were previously on separate, uncoupled

optical tables [99, 129, 140, 145, 148, 150, 151]. This phase stability is noteworthy

because no special precautions—such as floating the tables or placing boxes around

the device to minimize air currents, much less using interferometric feedback loops

[135, 138]—were taken to minimize the phase fluctuations.

The efficiency of the setup, as measured from the laser output to the sample,
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Figure 3-2: Phase stability of the COLBERT spectrometer. The spectra presented here
were measured on a device with a phase stability of λ/88 over fourteen hours (black line).
A recent improvement increased the phase stability to λ/157 (red line). The two traces are
offset from each other for clarity. The inset shows an enhanced view of two hours of the
measurement.

depends on the chosen geometry. For the geometries used in these experiments, it

ranges from 40% to 75%. All of the losses are from unwanted diffractions: once from

SLM 1, twice from G, and once from the vertical sawtooth pattern on SLM 2. Not

only is the setup efficient, it is versatile. The only changes needed to perform a new

spectroscopic measurement that may have a different number of beams as well as a

completely different beam pattern are: to update the phase pattern applied to SLM

1, to rearrange the spatial filters that block unwanted diffraction orders, to update

the phase patterns applied to SLM 2 during the experiment, to insert or rearrange

any waveplates needed to define the polarizations, to move the iris that isolates the

signal after the sample, and to reroute the signal beam into the detector. Since the

beam geometry and all time delays and optical phase changes are controlled by the

computer, there are no moving delay stages, interferometers, or wedges that would

normally need realignment after changes in the experimental geometry. Nor would

the phase need readjustment after each increment in the time delay of any pulse.

3.3 Extended-cavity oscillator

To generate measureable seventh-order signals and to have a small range over which

to vary the power, we required input pulse energies greater than our femtosecond

laser oscillator could normally produce. The typical pulse energy is about 5 nJ per

pulse, which—after propagating through the COLBERT apparatus—is not enough

to generate stable seventh-order signals. Since we required only a modest amount of

additional energy per pulse, we extended the distance between the two end mirrors
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Figure 3-3: Femtosecond oscillator. (a) Standard operational configuration. The pump
laser is focused by a spherical lens (L) to the Brewster-cut Ti:sapphire crystal (TS), which
causes gain and fluorescence. Some of the fluorescence is reflected by the first cavity mirror
(C1) toward a prism (P1). The prism refracts the light toward the folding mirror (FM),
which sends the light towards a second prism (P2). After refraction by P2, the light is
directed toward the high reflector (HF), which retroreflects the light through the optics
back toward the crystal. In the opposite direction, the fluorescence is captured by the
second cavity mirror (C2), and is directed toward the output coupler (OC), a 95% reflective
mirror. When the two passes overlap each other and the pump beam in the crystal, lasing
occurs. The pulse repetition rate is 92.5 MHz and each output pulse has an energy of 5 nJ.
(b) Extended cavity configuration. Three mirrors (M1–M3) are placed between the crystal
and the OC. Mirrors M1 and M3 are curved mirrors with 50 cm focal lengths. The pulse
repetition rate is 41.6 MHz and each output pulse has an energy of 7 nJ.

of the laser cavity—the high-reflector and the output coupler—to increase the round-

trip time of each pulse in the cavity. This additional time allows the pump laser to

add more gain in the Ti:sapphire crystal. When the pulse arrives, the extra excited

electrons result in additional stimulated emission. The increased pathlength lowered

the repetition rate from 92.5 MHz to 41.6 MHz, and the energy per pulse increased

to about 7 nJ. Since the intensity of the signal, superposed with the LO, varies as

the fourth power of the pulse energy, the small increase in energy yielded a notably

stronger seventh-order signal. If the power of the pump laser (Coherent V5 Verdi)

could have been increased to the expected 5 W, the increase in output pulse energy

would have been higher, about 10 nJ.

The path length was increased by 200 cm by placing three extra mirrors between

the Ti:sapphire crystal and the output coupler. The normal and extended-cavity

configurations are illustrated in Fig. 3-3. Two of the mirrors (M1 and M3) are spher-

ically curved with focal lengths of 50 cm. The curved mirrors image the beam, adding

stability to the system. Without imaging, the natural beam pointing fluctuations pre-

vent the laser from mode-locking stably. The extended cavity configuration was used

only for the seventh-order measurements.
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3.4 COLBERT alignment

The device requires geometric and temporal alignments. Geometric alignment refers

to the positioning and tilt variables which primarily affect the optical imaging. Tem-

poral alignment refers to those variables which primarily change the temporal profile

of the pulses.

The geometry alignment is surprisingly simple. We use a single beam by applying

a flat phase pattern to SLM 1. This single beam is aligned to the center of all the

optics and into the spectrometer after applying no waveform changes to SLM 2 except

the sawtooth pattern which is uniform for all the dispersed frequency components.

The pulse shaper is aligned using the standard procedure [247]. This nearly completes

the geometric alignment of the device except the ‘z’ position of SLM 2, which controls

the distance between CL and SLM 2. This is aligned after the temporal procedure. To

align this, we create a symmetric geometry—the BOXCARS geometry, for example—

using SLM 1 and then adjust the positioning until the visible astigmatism of the beam

geometry at M disappears.

Temporal alignment involves adjusting the ‘z’ positioning of the CL—changing

the distance between G and CL—by repeated FROG measurements until the single

pulse is transform-limited. We also adjust the ‘x’ tilt of the CL (the tilt that cannot

be aligned using a back-reflection) to reduce pulse-front tilt. This is performed using

the symmetric beam geometry and placing a BBO crystal at the sample position. The

CL tilt is adjusted carefully until the pulse cross-correlation beams are maximized at

the sample. The adjustment is extremely sensitive.

3.5 Two-dimensional Fourier beam shaping

The versatility of this device enables the spectroscopist to tailor all the key features

of a measurement to reveal the desired information. As an example using exciton

correlations, the biexciton binding energy can be extracted from biexciton–ground-

state coherences measured in a third-order two-quantum 2D FTOPT measurement

with cross-linear polarization [99]. However, if biexciton inhomogeneity information

is desired, fifth-order two-quantum rephasing scans are required [150, 151]. Both of

these cases are presented in future chapters. More generally, the information extracted

from an experiment depends on the number of beams, their geometrical arrangement

and polarizations, the time ordering, and the time delay variable(s) scanned. Thus,

these parameters must all be considered when designing an experiment.

Of particular importance is the beam geometry because this determines the phase-
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Figure 3-4: The SLM pixel size restricts the possible grating periods, which in turn restricts
the available diffraction angles. Smaller pixels allow more accurate placement of the beams.
The available grating periods—up to 700 μm—and their associated diffraction angles for
one dimension of the 2D SLM are shown for 1 μm (blue dots), 12 μm (black diamonds), and
24 μm (open red squares) pixel sizes. Their respective largest diffraction angles are about
24◦, 2◦, and 1◦. For the 150 cm focal length lens used here, the minimum angle needed to
clear the input beam is 0.08◦; the maximum angle, 0.95◦, is governed by the radius of the
output lens (2.5 cm). As the pixel size decreases toward 1 μm, the available angles approach
a continuum.

matching conditions of the measurement. Phase-matching, also called wave vector

matching, is the process by which energy and momemtum conservation of the in-

put fields determine the direction in which signal is generated [16, 177]. Momentum

conservation of the input field wave vectors links the beam geometry to the measur-

able information. Once the desired beam geometry is determined, the correct phase

pattern must be created and encoded into SLM 1. This phase pattern is essentially

the Fourier transform of the desired real-space beam pattern, where the size of the

features depend on the focal length of the input lens.

The pixelation of the device complicates the otherwise simple Fourier transform

and display processes because pixelation limits the available grating spacings. This is

most easily understood using a one-dimensional example. As shown in Fig. 3-4, the

pixel size determines both the largest diffraction angle and the density of diffraction

angles. The smallest diffraction angle is governed by the number of illuminated pixels.

To show the effects of pixel size, we calculated diffraction angles for pixels of three

commercially available SLMs using the grating equation nλ = d sin(θ). The smallest

value of d available along one dimension of our SLM is 48 μm, and thus it has at

most a 1◦ diffraction for the 150 cm focal length lens. This translates to about 1 inch,

which is at the edge of lens L2.

64



A 2D phase pattern is computed in the following manner. The set of beam co-

ordinates and amplitudes is converted from Cartesian coordinates (bi) to spherical

polar coordinates (ci), Eqn. 3.1. Then, transformations in beam angles due to refrac-

tive index changes or rotations in the beam geometry yield a modified set of polar

coordinates, c̃i, Eqn. 3.2. These angles are then transformed back to Cartesian co-

ordinates (b̃i), Eqn. 3.3, taking care to account for the quadrant ambiguity of the

arctan function,

{bi(x, y, a)} → {ci(θ, φ, a)} (3.1)

{ci(θ, φ, a)} → {c̃i(θ, φ, a)} (3.2)

{c̃i(θ, φ, a)} → {b̃i(x, y, a)}. (3.3)

A matrix describing the size of the SLM surface, S, is created in wave vector

coordinates with every element initially having a value of zero. This is Fourier trans-

formed as described by Eqn. 3.4 to the real-space domain, T , where again all matrix

elements are equal to zero. Seemingly unnecessary, this process ensures that the real-

space pixelation is correct so that its inverse Fourier transform back to wave vector

space has the desired pixelation. The values of those specific matrix elements in T

found to be nearest the desired beam coordinates, b̃i(x, y), are replaced with values

equal to the desired beam amplitudes, 0 ≤ b̃i(a) ≤ 1. This matrix is then inverse

Fourier-transformed to the wave vector domain as described by Eqn. 3.6, and its an-

gle (the imaginary part of the natural logarithm, Eqn. 3.7) is calculated to yield the

resulting phase pattern. Software converts the phase value of each matrix element to

a grayscale value, Eqn. 3.8. The conversion requires the calibration relating greyscale

to phase described in Sec. 3.9.1. The grayscale matrix, S̃, is encoded into the device.

Fig. 3-5 captures this procedure.

F [S(qx, qy, 0)] = T (x, y, 0) (3.4)

T (x, y, 0) → T (x, y, a) (3.5)

F−1[T (x, y, a)] = S(qx, qy, a) (3.6)

Im[ln[S(qx, qy, a)]] = S(qx, qy, φ) (3.7)

S(qx, qy, φ) → S̃(qx, qy, g). (3.8)

Spatiotemporal pulse shaping was first used in 2D FTOPT spectroscopy without

a diffractive optic to shape the beams spatially [129]. That method of spatial filter-

ing blocked most of the light, and light scattered by the edges of the holes in the

spatial mask added to experimental noise. Beam shaping by diffraction—a concept
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Figure 3-5: Two-dimensional Fourier beam shaping. (a) An 80 pixel by 80 pixel portion
of the phase pattern encoded in the beam shaping SLM; each pixel is 24 μm × 24 μm.
This specific pattern is used to generate a Y-shaped beam geometry [151], and the red area
illustrates the focused input beam. The beam waist diameter is about 1 mm, corresponding
to 40 pixels. The geometry is rotated by about 15◦ so that each beam encounters a different
vertical region of the spatiotemporal pulse shaper. The green box is a 10 pixel by 10 pixel
portion which clearly shows the pixelation of the pattern. (b) The calculated real space
beam pattern after recollimation by the output lens. The position and intensity of each
beam can be controlled. (c) Photograph of scatter from an index card of the experimental
beam geometry with clearly visible relative intensity differences. Unwanted, low-intensity
diffraction orders were blocked.
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used in other spectroscopic implementations [187, 192, 246, 248, 249]—in our beam

shaper increases the efficiency of the apparatus, produces outputs with Gaussian spa-

tial profiles, and minimizes cross-talk between pulses. Moreover, beam shaping by

diffraction using an SLM simplifies the procedure of changing the beam geometry.

Instead of creating a spatial mask by etching a diffractive optic for each geometry,

only a calculated phase pattern is updated.

3.6 Diffraction-based spatiotemporal pulse shap-

ing

Pulse shaping of ultrafast optical fields is a robust method of performing many ultra-

fast spectroscopy measurements [129]. In general, the temporal profile of a femtosec-

ond laser pulse is modulated by filtering the amplitudes and phases of its frequency

components. This requires optical components that can separate and control the pulse

frequencies. Temporal pulse shaping setups typically use a diffraction grating to dis-

perse the broadband laser pulse spectrally and a focusing element such as a lens to

focus the frequency components to different spatial locations. The filtering device—

the SLM—is placed at the Fourier plane of the focusing element [247, 250, 251].

One benefit to measuring multidimensional FTOPT spectra using spatiotemporal

pulse shaping is that since the phase profile is user-defined, in principle the user

has complete control over the temporal waveform of each field. Delays, chirps, pulse

trains, and more complicated temporal profiles can be introduced by merely updating

the phase pattern on the SLM. Hence, as mentioned in the introduction, pulse shapers

are often used in coherent control experiments [235, 252–255].

Unfortunately, liquid crystal SLMs are pixelated; this means that the pulse shaper

does not have complete freedom to define phase profiles because the phase changes are

not continuous across the spectrum [247]. The discontinuous sampling of the applied

phase profile affects the output waveform, except in the rare case when line-by-line

shaping can be used [256]. One of the most significant consequences of pixelated

phase profiles is that the output pulse cannot be delayed beyond a certain maximum

value in time; in the current system this time is about 10 picoseconds. To understand

how this happens, and how to calculate minimum and maximum delay times, we

consider the following situations.

Pulse delays are related to the phase profile through the Fourier shift theorem. A

time delay of the pulse envelope, τdel, corresponds to a linear change in the phase with

respect to frequency such that the slope is τdel and the user-defined carrier frequency
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is ω0,

φ(ω) = τdel(ω − ω0). (3.9)

Effectively, since the maximum of a femtosecond pulse envelope occurs when all of

the frequencies are in phase, at times before and after the maximum the phases are

shifted linearly as a function of frequency. Thus, a linear phase sweep imposed by the

pulse shaper simply moves the time of the envelope maximum. Stated another way,

the slope of the phase function is a constant, and this constant is the pulse envelope

delay,
δ

δω
φ(ω) =

Δφ

Δω
= τdel. (3.10)

For the moment we do not consider pixel binning, and we first want to find the

minimum delay possible, τmin. To do this we need two values: the minimum phase

change from one pixel to the next, Δφmin

1 pixel
, and the frequency difference from one pixel

to the next, Δω
1 pixel

. The minimum time delay is

τmin =

Δφmin

pixel
Δω

pixel

=
Δφmin

Δω
. (3.11)

For reflection-based pulse shaping, the numerator is related to the number of greyscale

settings of the device and the total phase change possible, see Sec. 3.9.1. Our

device has 256 greyscale settings encompassing about 2.5π phase modulation, thus

Δφmin = 0.03 radians. Meanwhile, if the pixels are small enough and if there are

enough pixels to cover the spectral bandwidth, the denominator is determined by

the frequency resolution of the grating/lens pair, see Sec. 3.7. Our grating/lens

combination gives a linear frequency resolution ( Δν
pixel

) of 0.02 THz. Thus,

τmin =
0.03

2π ∗ 0.02 THz
≈ 240 fs. (3.12)

The SLM is ordinarily a phase-only device; the liquid crystal rotation at any pixel

is used to shift the phase of light that arrives there. In diffraction mode [244], each of

the separated frequency components of each pulse is diffracted by a vertical sawtooth

grating pixel pattern within the horizontal stripe of SLM 2 that shapes that pulse.

This allows some degree of control over the amplitude while retaining control of the

phase. The phase and amplitude of the first-order diffracted frequency components

are controlled by the spatial phase, φ(ω), and amplitude, A(ω), of a sawtooth grating

pattern with periodicity ds, see Fig. 3-1(c). The spectral component of the diffracted
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light, E(ω), is controlled by the pattern such that

E(ω) = ei2πΔ/dssinc(π(1 − A(ω))), (3.13)

where Δ is the vertical displacement of the sawtooth grating pattern.

In diffraction-based shaping, the minimum delay situation is exactly the same as

was the case for reflection-based shaping, except the definition of Δφmin is no longer

related to the number of greyscale settings of the device. It is instead related to ds,

the number of pixels used to define one sawtooth period. In our case, we use twelve

pixels to define one sawtooth period, and so Δφmin = 2π 1
12

, yielding τmin = 4.2

ps. This value and the one found for reflection-based shaping are too large for 2D

FTOPT measurements, which often involve sub-femtosecond time delays. However,

these minimum delays correspond to the situation where the minimum phase step is

taken from one vertical column of pixels to the next across the SLM surface.

In practice the linear phase profile is oversampled in the frequency domain; several

columns of pixels are binned together to have the same phase shift. For example, in

diffraction-based shaping, if the columns of pixels are binned into four groups of 192

pixels each, then
Δφmin

pixel
=

2π/12

192
= 0.003, (3.14)

and the minimum time delay is reduced to about 25 fs. As we see below, this is

adequate for many 2D FTOPT measurements.

In principle, we could use the same analysis to find a maximum pulse delay.

In that case, we would take the maximum possible phase step from one pixel to

the next, remembering the modulus 2π. In the limit where Δφmax approaches 2π,

τmax approaches 50 ps for our given spectral resolution. For the diffraction-based

example, Δφmax = 2π 11
12

and τmax = 45.8 ps, and for the reflection-based example,

Δφmax = 2π 255
256

and τmax = 49.8 ps. Thus, τmax depends weakly on the number of

phase steps, but instead strongly depends on the spectral resolution.

In practice, however, we are limited by a Gaussian-sinc window governing the

amplitude modulation of the pulse as it is delayed. Derived elsewhere [257], this

window is given by

Eout(τdel) ∝ exp(−π2δν2τ 2
del)sinc(πΔντdel), (3.15)

where

δν =
δxΔν

h
, (3.16)

h is the width of one pixel, and δx = 4Fλ
πD

is the spot size with the CL focal length
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Figure 3-6: Calculated two-dimensional diffraction-based pulse shaping patterns. The
broadband pulse is dispersed across the horizontal dimension spectrally. (a) Stripe with
all phase parameters set to zero. (b) A π phase offset was applied, shifting the entire saw-
tooth pattern up by half a period. (c) The pulse had no phase offset, but was delayed by
500 fs. (d) Same as previous but a delay using four groups of binned pixels. (e) The pulse
has no phase offset or time delay, but was given a small amount of quadratic chirp. (f) The
pulse was given a time delay of 100 fs and the same chirp as in (e).
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F , beam diameter D and wavelength λ. In our usual configuration1 where Δν =

0.02 THz, δx = 60 μm, and h = 24 μm, then δν = 0.05 THz, and the resulting

FWHM of this function is about 10.5 ps. This function imposes a minimum linewidth

that will be convolved with the linewidth of the measured spectral features along

any scanned time coordinate. In Sec. 3.9.5 we discuss how to decouple this delay-

dependent amplitude modulation from the measurement when an accurate linewidth

is required.

In diffraction-based shaping, the applied phase profiles create stripes across the

SLM surface. The phase patterns illustrated in Fig. 3-6 show the algebraically

intuitive sawtooth grating patterns for different phase profiles: an unaltered pulse,

a phase shifted pulse, a time-delayed pulse, a time-delayed pulse requiring binning,

a chirped pulse, and pulse with a chirp and a delay. This process is multiplexed for

several pulses across the vertical dimension of the 2D SLM [258] as shown in Fig.

3-1(b).

Diffraction-based pulse shaping also discriminates against the pulse replica which

appear in the shaped waveforms of reflection-based pulse shaping using pixelated

phase patterns [247, 259]. Present only in the zero-order diffraction beam, replica are

eliminated by spatially filtering the beams using the pick-off mirror (M) illustrated

in Fig. 3-1.

3.7 Pulse shaper resolution

The resolution of the pulse shaper—frequency per pixel ( Δν
pixel

)—is a difficult quantity

to calculate exactly, and we do so only approximately. We use the standard notation

where angular frequency (ω) is related to linear frequency (ν) via ω = 2πν. We first

relate Δν
pixel

to the spatial distance Δx = x2−x1 between two frequencies Δν = ν2−ν1,

Δν

pixel
=

(ν2 − ν1)h

(x2 − x1)
, (3.17)

where h is the width of one pixel. We typically pick ν2 and ν1 using the width of

the pulse spectrum: ν2 = ν0 + σ and ν1 = ν0 − σ, where ν0 is the center frequency

of the pulse and σ is the standard deviation. The approximation lies in our ability

to calculate the coordinates at which these two frequencies are focused, x2 and x1.

1In this configuration each frequency is focused to a line with a width that is greater than one
column of pixels.
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Using the Taylor expansion result of Ref. [250],

xi =
mcF

dν2
0cos(θi)

(νi − ν0), (3.18)

where F is the focal length of CL, c is the speed of light, m is diffraction order

(usually m = 1), d is the grating spacing of G, and θi is the angle at which frequency

νi diffracts from G. The grating spacing d is the inverse of the groove density. The

diffraction angle of frequency νi is given by the grating equation,

θi = sin−1

(
mλi

d
− sin(a)

)
, (3.19)

where a is the angle at which the beam is incident on G.

In our standard configuration, d = 0.714 μm, a = 10◦, λ0 = 800 nm, σ = 5 nm,

F = 12.5 cm, and h = 24 μm. Using these values, ν2 = 377.1 THz and ν1 =

372.4 THz, θ2 = 70.0◦ and θ1 = 72.4◦, x2 = −2.56 mm and x1 = +2.88 mm, and
Δν

pixel
= 0.02 THz. This value is accurate in the linear dispersion approximation; had

we chosen a different frequency range, this value could have varied by as much as

50%.

3.8 Rotating frame detection

The method used to delay excitation pulses in an FTOPT experiment profoundly

affects the phase behavior of the signal [260]. When a pulse is delayed by a translation

stage or a wedge—a ‘path-length’ delay—its arrival time is given by

E(t) = Ã(t − τ)(e−iωc(t−τ) + c.c.), (3.20)

where Ã(t−τ) is the amplitude envelope and ωc is the center frequency of the Gaussian

pulse. Its Fourier transform to the frequency domain is

E(ω) = A(ω − ωc)(e
−iωτ + c.c.). (3.21)

Over the delay time τ , a frequency ωa accumulates a phase of ωaτ ; the optical phase

of the signal field is swept through a complete cycle each time an excitation pulse is

delayed by just one optical period. Therefore, data must be recorded at many delay

points within a single optical period in order to elucidate the signal phase behavior.

If pulses are delayed using a pulse shaper, however, the phase at a user-defined

carrier frequency, ω0, can be held constant while the relative phases of other frequen-
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cies, such as a resonance frequency ωa, shift in proportion to the frequency difference

ωa − ω0. This is analogous to rotating frame detection in NMR [100]. The phase

of the excitation and signal fields oscillate gradually as functions of excitation pulse

delay, and the signal phase behavior can be sampled using large time steps.

To delay a pulse using this method, ω0 is selected—usually but not necessarily

within the pulse bandwidth—and the slope of the linear phase sweep is varied in

the SLM pixel pattern. This advances the pulse envelope but keeps the phase of the

carrier frequency constant. Thus, the waveform generated by the SLM can be written

in the time domain as

E(t) = Ã(t − τ)(e−iω0t + c.c), (3.22)

whose Fourier transform to the frequency domain is

E(ω) = A(ω − ω0)(e
−i(ω−ω0)τ + c.c). (3.23)

The phase of a frequency component ωa still advances as the pulse envelope is delayed,

but at a relatively slow rate. A full 2π cycle for the phase at frequency ωa occurs

only when the time delay increases by the beat period, 2π/(ωa − ω0). This period

can correspond to roughly 100 optical periods, in contrast to signal oscillations that

occur at the much faster optical frequency when pulses are delayed using ‘path-length’

changes. Slowing the coherent oscillations in this manner allows large step sizes to

be taken without undersampling.

In practice the selected carrier frequency has its phase held constant in all the

beams by keeping their sawtooth grating patterns at that frequency identical to each

other. We often select 368 THz (1522 meV) as the carrier frequency. Referencing

coherent oscillations to this frequency slows them as much as possible to allow for large

step sizes, but without completely removing the oscillatory behavior. The oscillations

are useful when eliminating scatter. At this carrier frequency, the H and L excitons

oscillate at about 4 and 7 THz, respectively. Considering only H excitons, this

means that two-quantum, three-quantum, and four-quantum coherences respectively

oscillate at about 8 THz, 12 THz, and 16 THz. Step sizes need to be taken considering

these frequencies, not the optical frequencies which correspond to 4−6 eV. Specifically,

in the two-quantum rephasing measurement, the −2ka field was scanned from 0 to 2.5

ps in 256 steps, giving a maximum frequency of 51 THz. The +3kb field was scanned

in three-quantum nonrephasing measurements from 0 to 1.5 ps in 256 steps, resulting

in a maximum frequency of 85 THz. The −3kb field in three-quantum rephasing

measurements and the +4kb field in the four-quantum nonrephasing measurement

were scanned from 0 to 1 in 128 steps, resulting in a maximum frequency of over
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60 THz. The step sizes taken in these scans are sufficient to observe the multiple-

quantum coherent oscillations.

In the present work, we shift all frequency axes which result from delayed pulses

out of the rotating frame frequencies to true optical frequencies by first accurately

measuring the carrier frequency and then adding the carrier frequency value(s) to the

axis values. Multiple ω0 values might be needed if more than one beam is delayed.

In Sec. 3.9.4 below, we discuss how to determine the carrier frequency with high

accuracy.

3.9 Calibrating COLBERT

The device requires several calibration procedures for optimal performance, some of

which were suggested above. The amount of phase shift imparted by each greyscale

setting of the SLMs must be measured. This calibration depends only minimally

on the wavelength and needs to be performed only once per device; the calibration

curves of our SLMs have been reproducible over a period of years. The five remaining

calibrations are less forgiving. Each time the spectrum of the pulse changes or the

COLBERT is realigned, three calibrations must be performed. The frequencies of

light controlled by each vertical stripe of pixels must be determined for proper delay

calculations; the carrier frequency of each delayed pulse must be determined for proper

rotating frame delay relations; and the beam distortions from the cylindrical lens of

the pulse shaper must be reversed. If accurate linewidths or dephasing times are

required, the delay-dependent amplitude modulation must be determined. Finally,

each measurement in which the complex signal, rather than simply the amplitude, is

desired requires a measurement of the global phase offset. These six calibrations are

detailed below.

3.9.1 Greyscale to phase shift calibration

A basic calibration required of any SLM is to determine the phase change imparted

by each greyscale value setting. Our 8-bit SLMs have 256 greyscale settings encom-

passing about 2.5π radians of phase modulation for 800 nm light. The optical setup

for this calibration procedure, depicted in Fig. 3-7(a), involves vertically splitting

the SLM into two regions; the left side remains at a greyscale value of zero while the

greyscale value of the right side will be varied. A cylindrical lens focuses the two first-

order diffractions from the phase mask onto the plane of the SLM surface. A beam

splitter is placed before the phase mask, and one interference fringe of the recombined
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Figure 3-7: Greyscale to phase calibration of the spatial light modulator (SLM). (a) The
input beam transmits through a beam splitter (BS), and the two first-order diffractions
from the phase mask (PM) are focused by the cylindrical lens (CL) onto the surface of the
SLM. One half of the SLM surface remains at a greyscale value of zero while the other half
is scanned. At each of the 256 values, an isolated fringe of the beam reflected by the BS
is measured by the detector (det). (b) Measured greyscale to phase change function (black
dots) and its fit to a fifteenth order polynomial (solid red line). (b) From the polynomial
fit, the function relating greyscale to phase, g(φ), is calculated and plotted. This specific
SLM is capable of about 2.5π phase modulation for 800 nm light. The green dashed line
is a linear reference to show the slight nonlinearity of the function. The two SLMs have
different responses and so must be calibrated individually.

beam is isolated with an iris and used to measure the phase change. We chop one

arm (Thorlabs MC1000) at 500 Hz as it passes between the CL and the SLM. The

signal is detected in a silicon photodiode (Thorlabs DET10A) and transmitted to the

computer by a lock-in amplifier (Stanford Research Instruments SR830 DSP).

Following Refs. [259, 261], we fit the measured profile shown in Fig. 3-7(b) to a

fifteenth-order polynomial function, take its inverse cosine, and then patch the sec-

tions together to form a continuous greyscale-to-phase function, φ(g). This function

is inverted, and the resulting phase-to-greyscale function, g(φ), is fit to a fifth-order

polynomial; this is shown in Fig. 3-7(c). This is used by the software to convert a

desired phase shift to a greyscale value.
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This calibration procedure assumes that the device response is not wavelength

dependent. This assumption is valid for low bandwidths, and phase changes do not

measurably differ for our 100 fs pulses. For higher-bandwidth pulses, this deviation

introduces significant phase errors [262]. In that case, the phase calibration for each

frequency should be measured independently.

3.9.2 Wavelength to pixel calibration

Proper operation of the spatiotemporal pulse shaper requires knowing which frequen-

cies are controlled by each pixel [259]. The calibration procedure is shown schemat-

ically in Fig. 3-8(a) and requires an accurate alignment of the rotation of the SLM

face. A three-pixel-wide vertical stripe is displayed, and the spectral components

are measured in the spectrometer. The wavelength of maximum intensity (λn) is

the wavelength of the center pixel in the stripe (xn). The stripe is three pixels wide

because a minimum of three pixels is required to have a full phase shift of the center

pixel [259]. This stripe is scanned across the surface, usually every five pixels. Mea-

sureable light intensity fills about half the width of the SLM surface, thus about 80

measurements are made. An example data set is shown in Fig. 3-8(b). It is fit to a

polynomial, and this function—λ(x)—is inverted and interpolated to the frequency-

to-pixel function, x(ν). This function, shown in Fig. 3-8(c), is used when encoding

waveforms. The calibration is performed before sample insertion.

3.9.3 Aberration-induced temporal modulation correction

One drawback to the current spatiotemporal pulse shaping component of the COL-

BERT spectrometer is the cylindrical focusing lens. This optical element causes

spherical and chromatic aberrations that are difficult or impossible to correct opti-

cally [251]. These aberrations cause the pulses in the beams to experience different

amounts of dispersion because the beams traverse different horizontal locations of the

cylindrical lens, as shown in Fig. 3-1(d). The varying amounts of dispersion make

the pulses arrive at the sample location at different times with various amounts of

chirp.

To compensate for these distortions, we correct one beam optically by adjusting

the ‘z’ position of the cylindrical lens while monitoring the duration of the pulse in

the chosen beam using a frequency-resolved optical gating (FROG) apparatus [263].

We are unable to correct all of the beams simultaneously in this fashion because,

depending on the horizontal distance from the center of the cylindrical lens, the

optimal ‘z’ position differs. After correcting the one—usually the center—beam, we
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Figure 3-8: The wavelength to pixel calibration is performed with the sample removed and
all beams except the LO blocked. (a) The position of a three-pixel-wide stripe, centered
at pixel xn, is scanned across the SLM surface, usually every five pixels. At each position,
the wavelength corresponding to the maximum of the sharp spectral peak, λn, is measured.
(b) Maximum wavelength values are collected across the SLM surface. (c) The wavelength
values are interpolated to a frequency coordinate and fit to a fifth-order polynomial. This
function is then inverted to the desired frequency-to-pixel function: λ(x) → x(ν).
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place a 100 μm thick BBO crystal at the sample location, and, one at a time, the

pulses in the beams are cross-correlated with this transform-limited pulse. We detect

the doubled, 400 nm, signal in a photodiode and use lock-in detection with a beam

chopper placed in the transform-limited beam. Typically the only compensation

needed to return the deformed beams to a transform-limited state are first-order and

second-order phase modulations, corresponding to temporal delays and quadratic

chirp, respectively. These compensation parameters are then incorporated in the

subsequent coherent measurements. Typical correction factors are delays of about

0.200 ps and chirps of about 0.010 ps2. If the cross-correlations are performed with

the waveplates in place, waveplates thickness delays are corrected at the same time.

3.9.4 Carrier frequency calibration

As discussed above, one selected spectral component is selected as the carrier fre-

quency ω0; its phase in all the fields is kept constant as the envelopes of pulses are

time delayed. We calibrate the carrier frequency using one-quantum measurements in

which a diagonal peak location is determined by emission from an exciton coherence

at frequency—determined with ±0.01 meV accuracy in the spectrometer—and the

beat frequency at which the signal oscillates as a function of the time delay between

the first two pulses. To calibrate the carrier frequency of beam ki, we measure a

one-quantum co-circular polarization signal by delaying pulse Ei. Co-circular one-

quantum signals generate a strong H exciton peak which should be symmetric about

the diagonal because the H excitons should absorb and emit at the same frequency

[146]. Accurate calibration of the carrier frequency yields accurate determination

of multiple-quantum coherence frequencies from which multiexciton binding energies

are determined. Our calibrations gave an uncertainty of ±0.1 meV for each quantum

involved in the multiple-quantum energies, limited by the precision of beat frequency

measurements due to signal-to-noise limitations, not by calibration accuracy.

3.9.5 Delay-dependent amplitude modulation correction

As mentioned in Sec. 3.6, the intensity of a pulse delayed using a spatiotemporal pulse

shaper is modulated with respect to its delay, I(τdel) by a Gaussian-sinc window. The

Fourier transform of this decay is a spectral linewidth,

F [I(τdel)] = I(ωdel). (3.24)
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Figure 3-9: Measuring the global phase offset (ΔΦ) of the emitted signal to phase a 2D
spectrum. (top) Spectra around the H exciton wavelength measured for varying values of
the phase of one excitation pulse. (bottom) Measured (black squares) and cosine fit (red
line) to the integrated phase profile. The fit to several cycles of the cosine function indicates
that ΔΦ = 1.2 radians.

Unless they are compensated, FTOPT signals measured during a delayed time period

will be convolved with I(ωdel) in the frequency domain. We can compensate for

this modulation by designating an upper bound on the amplitude of the output

waveform. The amplitude of the output waveform is then modulated to change the

overall amplitude of the sawtooth phase profile—A(ω) in Fig. 3-1(c)—as the pulse

is delayed. The correction procedure involves first measuring I(τdel) by blocking all

fields except the LO and measuring the pulse spectrum while delaying the LO over a

±8 ps range without phase cycling. We then integrate spectrally and fit the resulting

data set to a polynomial. If a desired pulse delay is within the designated temporal

range, the amplitude of the sawtooth phase pattern is decreased according to the fit

function. In this manner, the pulse energy is maintained constant while the delay

is swept. Unfortunately, much of the pulse energy is lost by this method. Another

way to compensate for the modulation is to deconvolve it from the resulting signal

trace. This method is acceptable if the time-dependent signal profile is not affected

substantially by the changes in pulse energy—and exciton density—at different delays.

3.9.6 Global phase calibration

Although the timings of the excitation pulses are calibrated at the sample using

the procedure above, uncertainty remains about the relative optical phase of each

pulse. Since the optical phase of the signal field depends on the optical phase of

each excitation field, uncertainty remains about the global phase offset of the signal.

Determining the value of the global phase offset is critical if the complex field—not

merely the amplitude—is to be reported. The emitted third-order signal field can be
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written in the frequency domain as the product of an amplitude function A(ω), and,

for τ1 = τ2 = 0, the global phase offset given by the phase offsets of the excitation

pulses (δφi),

Esig(ω) ∝ A(ω)e−i(−δφa+δφb+δφc). (3.25)

The measured interference pattern between the signal field and the LO is then

I(ω) ∝ cos(δφLO − δφa + δφb + δφc)

= cos(ΔΦ), (3.26)

where ΔΦ is the global phase offset. Note that Eqn. 3.26 holds only for third-order

measurements in the BOXCARS geometry. ΔΦ must be calculated for any specific

geometry.

Several methods have been developed to determine this global phase offset [110,

132, 264]. Here, we use the pulse shaper itself to both measure and correct the phase

offset between the LO and the emitted signal. ‘Phasing’ in this manner does not

require independent pump-probe measurements [110] or an external imaging appa-

ratus [132, 264]. We measure the global phase offset by varying the phase of one of

the pulses and measuring the interferogram at each phase value as illustrated in Fig.

3-9. We then integrate the interferogram over the H exciton emission energy and fit

the resulting traces to a cosine function to determine the phase offset. By applying

a phase value that makes the global phase offset to be zero, we have ‘phased’ our

signal.

The determined phase offset value can either be added as a phase factor to one

of the pulses during the experiment, or it can be used as a multiplier for the entire

data set after the measurement. Although a single measurement is sufficient, the

phase offset can be determined with greater accuracy if this procedure is performed

for every excitation field to calculate an average phase offset. This procedure must

be performed each time the polarizations of the excitation fields are changed.

3.10 Spectral interferometry

When sent alone into the spectrometer, all phase information about the signal field,

Esig(ω) = Asig(ω)(e−iφsig(ω) + e+iφsig(ω)), (3.27)
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is lost by square-law detection,

|Esig(ω)|2 = Asig(ω)2. (3.28)

The most common method used to retrieve this phase information is a heterodyne

detection method in which the signal is superposed with the LO field and the resulting

spectral fringes are measured by a spectrometer [265]. A cross-term which depends

on both the signal and local oscillator phases can be measured, and if calculated

properly, the phase of the signal, φsig(ω), can be isolated by applying a filter in the

Fourier domain.

This is performed by first measuring the interference spectrum between the emit-

ted signal and the LO,

I(λ) = |Esig(λ) + ELO(λ)|2. (3.29)

The temporal delay between the two fields (τLO) causes a fringe pattern to appear

in the spectrometer, as shown in Fig. 3-10(a). The fringe width is the inverse of

τLO—we typically use 1 ps. The location of the fringe relative to a stationary fre-

quency index gives the relative phase of the signal field. The next step is to subtract

the two homodyne portions obtained in separate measurements and interpolate from

wavelength to frequency coordinates to leave only the cross term,

EXT = I(ω) − ILO(ω) − Isig(ω) (3.30)

= 2Asig(ω)ALO(ω) cos(φsig(ω) − φLO(ω)). (3.31)

This process is depicted in Fig. 3-10(a), where the signal spectrum (with all fields

at τ = 0), the LO spectrum (which shows a dip at the resonances because the LO

propagates through the sample), and their interference spectrum are depicted. Also

shown is the difference spectrum, EXT (λ), which is interpolated to a linear frequency

coordinate, EXT (ω), in Fig. 3-10(b). In the COLBERT spectrometer, phase cycling

procedures (discussed in Sec. 3.11) accomplish the homodyne subtraction indicated

by Eqn. 3.30, and the interpolation is performed on the computer.

The cross term is real (with no imaginary components), and it can therefore be

written as the sum of two complex conjugate signals,

EXT = 2Asig(ω)ALO(ω)(e−i(φsig(ω)−φLO(ω)) + c.c.) (3.32)

We isolate one of the two phase terms by first inverse Fourier transforming to the
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Figure 3-10: Spectral interferometry algorithm. (a) Spectral fringes caused by interfering
the signal with the LO in the spectrometer. The τ1 = τ2 = 0 spectrum of the emitted
signal (black dashed line) and the LO spectrum (black solid line) are subtracted from their
interference spectrum (red solid line) to leave only the cross term (blue solid line). While
the H exciton is the strong feature at 806 nm, the L exciton feature—which is barely visible
at 802 nm in the signal spectrum—is enhanced in the interference and cross term spectra.
Signals from the substrate are visible near 820 nm. (b) The cross term is interpolated to
a frequency axis. (c) The cross term is then Fourier transformed to the time domain (blue
and black lines), and a filter (red line) is applied to select only the positive-time component
of the signal (black line). Only the real part of the complex signal is displayed. (d) The
remaining signal is Fourier transformed back to the frequency domain and converted to an
energy unit. The amplitude (blue line) and phase (green line) of the resulting complex-
valued signal are displayed.
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time domain to yield signals at both positive and negative times,

F−1[Asig(ω)ALO(ω) cos(φsig(ω) − φLO(ω))]

= B+(t) + B−(t). (3.33)

Because the signal is not emitted before all the excitation pulses have interacted,

a step function can be applied to remove the portion of the signal that appears at

negative times, B−(t). The remaining portion, B+(t), is Fourier transformed back to

the frequency domain to yield a complex signal,

F [B+(t)] = Asig(ω)ALO(ω)eiφsig(ω)−iφLO(ω). (3.34)

To isolate φsig(ω), we use the key spectral interferometry step to remove φLO(ω) with

the relation

φLO(ω) = (ω − ω0)τLO, (3.35)

and the amplitude of the LO spectrum such that

Asig(ω)ALO(ω)eiφsig(ω)−iφLO(ω) ∗ e+i(ω−ω0)τLO

ALO(ω)
= Asig(ω)eiφsig(ω). (3.36)

Computationally, spectral interferometry is performed by first interpolating the

initial real-valued 2D data set, S(τscan, λemit), to a similar real-valued data set with fre-

quency values, S(τscan, ωemit). The emission dimension is inverse Fourier transformed

to yield a temporal data set, S(τscan, τemit), whose matrix elements are complex.

The negative-time side of the emission dimension is zeroed, S(τscan, τemit < 0) = 0.

The emission dimension is Fourier transformed back to the frequency domain, but

now the matrix elements of S(τscan, ωemit) are complex. The spectral interferometry

algorithm—removing the phase accumulated during τLO and the amplitude of LO

spectrum—is then applied to yield S̃(τscan, ωemit). At this point any global phase

offset can be removed using the inverse of the measured global phase shift. The am-

plitude and phase of the emitted field for any value of the scanned time dimension

can now be retrieved from S̃(τscan, ωemit).

The general process for performing spectral inteferometry is described in this

section. Several studies have focused on the accuracy of the extracted information.

Specifically, the role that the detector calibration plays on the extracted phase profile

has been studied [266, 267]. Other work has focused on extracting information using

a second-order diffraction from the grating in the spectrometer [268].
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3.11 Phase cycling procedures

Phase cycling [129] reduces undesired signals due to scattered light from both the

sample and the SLM surface. This is accomplished by summing measurements with

different phases of the input fields to eliminate all terms that do not have the desired

dependence on the phases of all the inputs. Phase cycling is commonly used in NMR

spectroscopy [100] to reduce unwanted signal contributions, and it has been used pre-

viously in FTOPT measurements [99, 129, 140, 145, 148]. Wave vector selectivity

significantly reduces the number of possible contaminating signals in FTOPT com-

pared to NMR, so instead of tens or hundreds of steps, we often use just eight. As an

example of how phase-matching can reduce the number of signal contributions, in a

co-linear beam geometry, sixteen steps were required for the same scan in which we use

eight steps because of overlapping rephasing and nonrephasing signals [106, 127]. In

this instance, this drawback could be an advantage for collecting correlation spectra,

as we will see in Sec. 4.4.

In the phase cycling procedure of third-order measurements using the BOXCARS

geometry, the phase of each input beam was varied by π since each beam contributed

one field interaction. In high-order measurements, a single beam often contributes

more than one field interaction, and thus the phase variation is a corresponding

fraction of π, such that the overall signal phase is varied by π and the appropriate

terms will be eliminated when the signals are subtracted. As an example, consider

scatter from both beams in a fifth-order 3kb − 2ka measurement. The intensity

recorded by the spectrometer is

I(ω) =

∣∣∣∣∣∣
ELO(ω)eiφLO(ω) + Esig(ω)eiφsig(ω)

+ Ea(ω)eiφa(ω) + Eb(ω)eiφb(ω)

∣∣∣∣∣∣
2

, (3.37)

where

φsig(ω) = −2φa(ω) + 3φb(ω). (3.38)

Suppressing the frequency dependence, a complete expansion of this equation,

I = ILO + Isig + Ia + Ib

+ 2ELOEsig cos(−2φa + 3φb − φLO)

+ 2ELOEa cos(φa − φLO) + 2ELOEb cos(φb − φLO)

+ 2EsigEa cos(3φa − 3φb) + 2EsigEb cos(2φa − 2φb)

+ 2EaEb cos(φb − φa), (3.39)
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includes four intensity terms and six cross terms. Only one is the desired term, the

local oscillator crossed with the signal,

2ELOEsig cos(−2φa + 3φb − φLO). (3.40)

An eight-step procedure can isolate the desired cross term; beam ka is incremented

in steps of π/2, beam kb is incremented in steps of either π or π/3 , and beam kLO is

cycled in steps of π. After cycling kb in the first step,

Itwo−step = I(φa, φb, φLO) − I(φa, φb + π, φLO)

= 4ELOEsig cos(−2φa + 3φb − φLO)

+ 4ELOEb cos(φb − φLO)

+ 4EsigEa cos(3φa − 3φb)

+ 4EsigEb cos(2φa − 2φb)

+ 4EaEb cos(φb − φa), (3.41)

only five terms remain. Cycling beam kLO in addition to beam kb requires two more

measurements. This eliminates all but two terms,

Ifour−step = I(φa, φb, φLO)

− I(φa, φb + π, φLO)

− I(φa, φb, φLO + π)

+ I(φa, φb + π, φLO + π)

= 8ELOEsig cos(−2φa + 3φb − φLO)

+ 8ELOEb cos(φb − φLO). (3.42)

The eight step cycle,

Ieight−step = I(φa, φb, φLO)

− I(φa + π/2, φb, φLO)

− I(φa, φb + π, φLO)

− I(φa, φb, φLO + π)

+ I(φa + π/2, φb + π, φLO)

+ I(φa + π/2, φb, φLO + π)

+ I(φa, φb + π, φLO + π)
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− I(φa + π/2, φb + π, φLO + π)

= 16ELOEsig cos(φsig − φLO), (3.43)

isolates and amplifies the desired cross term.

Each measurement requires a unique phase cycling scheme where, as shown above,

the phase increment is simply the inverse of the number of field interactions by that

beam. Finally, the more beams involved in a measurement, the more cycle steps

are needed. Although this increases data acquisition times, it amplifies the signal

further. For cycling procedures involving many steps, it may be advantageous to in-

corporate non-integer-fraction cycling procedures, such as a COGWHEEL, to reduce

the number of overall steps [269].

3.12 Operation COLBERT: Performing a measure-

ment

Once the preceeding calibrations are in place, the device is ready to perform a mea-

surement. The software can to convert desired phase shifts into the correct greyscale

values on the SLM using the calibration curve. The apparatus was built in an all-

imaging arrangement. The pulse shaper was set so that one beam was measured

to be near-transform-limited by an external FROG. The calibration procedure relat-

ing frequency to pixel location was then performed so that pulse delays and phase

shifts can be properly encoded. The aberration-induced modulations were fixed by

performing cross correlations at the sample plane using the near-transform-limited

pulse as a reference. One-quantum two-dimensional co-circular measurements, using

the proper phase cycling procedure, were then performed to calibrate the carrier fre-

quency in each scanned beam. A final calibration measurement using the polarization

conditions of interest was then performed, but instead of time-delaying the field(s),

the phase of one field was varied to calibrate the global phase offset. The delay-

dependent amplitude modulation was also corrected. Finally, a two-dimensional scan

was performed and analyzed using the data acquisition and spectral interferometry

procedures depicted in Fig. 3-11. The scanned time dimension of the resulting data

set—using the notation of Sec. 3.10, S̃(τscan, ωemit)—was zero padded if needed and

then Fourier transformed to yield S̃(ωscan, ωemit). The carrier frequency2, was added

to the scanned frequency axis values to yield S̃(ωscan + ω0, ωemit). The resulting

complex-valued spectrum was then transformed to S̃(Escan, Eemit) by multiplying the

2Or frequencies if two or more different beams were scanned.
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Figure 3-11: Result of a third-order rephasing experiment (τ2 = 0) using co-linearly po-
larized pulses in the BOXCARS geometry. (a) The unprocessed data shows coherent os-
cillations at the H and L exciton emisson energies of 1540 and 1546 meV, respectively.
Phase cycling reduced signals due to scattered light, eliminated homodyne contributions,
and amplified the signal. (b) One step in the spectral interferometry procedure is to Fourier
transform the emission frequency dimension to the time domain. At this point in the pro-
cedure, we plot the amplitude of the complex-valued time domain signal. (c) The final
amplitude spectrum after finishing the spectral interferometry procedure along the emis-
sion dimension and Fourier transforming the scanned time dimension. Cross peaks between
the H and L excitons indicate their coupling. (d) The real part of the spectrum provides
additional information about many-body interactions [139].
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axis values by the Planck constant. Often the amplitude of this spectrum or only

its real part are displayed. A 2D spectrum can be acquired in about ten minutes for

eight-step phase cycling whereas a 3D spectral solid data set requires about ten hours

to acquire. The current laboratory procedure for measuring a signal involves at least

six—and up to ten—steps:

1. Adjust the laser to have the desired bandwidth and central wavelength.

2. Perform the geometric alignment.

3. Insert waveplates, if needed.

4. Perform the temporal alignment of the center beam.

5. Perform the wavelength-to-pixel calibration.

6. Correct the temporal modulations using cross-correlation measurements.

7. Calibrate the carrier frequency, if needed.

8. Calibrate the global phase, if needed.

9. Calibrate the amplitude modulation, if needed.

10. Acquire the desired spectrum using spectral interferometry and phase cycling.

The raw phase-cycled data for a third-order co-linear polarized scan are shown

in Fig. 3-11(a). Coherent oscillations with positive and negative amplitudes are

observed at the H and L exciton energies—1540 and 1546 meV, respectively—during

time period τ1. The tilt of the peaks is related to the difference between the exciton

frequency and the carrier frequency, ωe − ω0. Increasing this frequency difference

makes the phase, (ωe−ω0)τdel, accumulate faster as the pulse is delayed. This results in

faster-moving fringes that must be sampled using smaller time steps. While applying

the spectral interferometry algorithm—performed across ωemit for each τ1 value—the

two-dimensional temporal signal can be retrieved. The amplitude of this signal is

displayed in Fig. 3-11(b). After the spectral interferometry algorithm is finished

and the scanned time dimension, τ1, has been Fourier transformed, the resulting

spectrum can be displayed. Its amplitude is displayed in Fig. 3-11(c), and its real

part is displayed in Fig. 3-11(d). The values along the vertical axis—which Fourier

transform to negative values because of the frequency-accounting scheme used to

illustrate which field(s) contribute a negative wave vector to the emitted signal—

were converted to positive values. Several many-body interactions are observed in

this spectrum as discussed in future chapters and in Ref. [139].
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3.13 Limitations of the COLBERT spectrometer

Although the COLBERT spectrometer is versatile and efficient, it also has limitations.

In principle, all of the problems have solutions. The most hindering limitation is the

delay-dependent amplitude modulation. Line-by-line shaping [256] can overcome this

problem, but it requires a carrier-envelope phase-stabilized oscillator [270], and—for

our pulse bandwidth—this technique requires an SLM with about an order of mag-

nitude more pixels in the horizontal dimension than the one used here. Furthermore,

the oscillator would need to be at a high repetition rate so that the frequency sepa-

ration between each line in the comb is large. The pulse spectra would also need to

have a small bandwidth to minimize the number of lines in the comb. The ensuing

long pulse duration is acceptable for GaAs quantum wells but could prohibit studies

of systems with faster dephasing times. On the other hand, if the coherences dephase

quickly, the amplitude modulation will have less of an influence.

The aberration-induced temporal modulations caused by the cylindrical lens present

another challenge. These modulations can be eliminated by replacing the lens with a

cylindrically curved mirror and changing to a reflective geometry [251]. This change

will eliminate the off-axis cylindrical aberrations so that all of the beams will have

the same dispersion. Thus all of the beams can be optically corrected without ad-

ditional phase compensations through cross correlations. However, this introduces a

vertically dependent temporal delay problem because the top beams and the bottom

beams will traverse slightly different pathlengths.

The long path length may hinder commercial acceptance. The length can be re-

duced by using shorter focal length lenses throughout the device, but this requires

a beam shaping SLM with a higher damage threshold and smaller pixels. Another

approach is to replace some lenses to use non-unitary imaging ratios. For example,

lenses L2 and L3 could be smaller focal lengths as long as the distances were simul-

taneously changed so that the focal planes remain unchanged: L2 must recollimate

the outputs of the beam shaper and L3 must have a focal plane at M. If waveplates

were not needed, the focal length of lens L5 could be significantly shortened.

Although our SLMs have a damage threshold of 2 W/cm2, the coatings used

to do this limit the bandwidth to 800±50 nm. In general, however, COLBERT

is not limited to this particular region of the spectrum. Liquid crystal on silicon

(LCOS) SLMs which cover most of the visible and near-IR parts of the spectrum are

available. MEMS-based SLMs capable of working in the visible and UV regions are

also available, and 2D infrared SLMs are in development.

Finally, the data acquisition time could be reduced if the SLM refresh rate, cur-

rently 3 Hz, were increased. Since this depends on the rise time of the liquid crystals,
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MEMS-based devices would be more appropriate [172]. Unfortunately, such devices

are less efficient because the large gaps between pixels cause additional unwanted

diffractions.

3.14 Summary

In this chapter we described a versatile and efficient device, the COLBERT spectrom-

eter, capable of performing multidimensional coherent spectroscopic measurements at

optical wavelengths. The device requires relatively few optics and, once constructed,

requires relatively little reconfiguration to perform measurements at varying nonlin-

ear orders under varying conditions. The biggest limitation of the device is its limited

delay range. Several calibration procedures are required for optimal operation. We

also discussed areas for future improvements to the spectrometer.

In the following chapters, we show numerous multidimensional spectra. The spec-

tra demonstrate the sophisticated and wide-ranging experiments possible using the

COLBERT spectrometer.
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Chapter 4

Two-particle correlations: excitons

This chapter describes several experiments designed to measure the properties of the

single excitons in our system. The linear absorption spectrum of the material has

two resonances due to the H and L excitons. We can extract resonance energies, ab-

sorption coefficients, and dephasing times from the locations, amplitudes, and widths

of the peaks, respectively. We use the absorption coefficients to estimate the carrier

density. The transient grating experiment reveals an unusual initial nonexponential

decay in addition to the lifetime of the H excitons. After these one-dimensional

measurements are presented, discussion proceeds to multidimensional spectra.

The presence of cross peaks in the 2D FTOPT spectra indicate that the H and L

excitons are coupled. The 2D FTOPT spectrum changes as polarization conditions

are varied, and many of the changes are not merely due to pathway selectivity dif-

ferences. Correlation spectra at different waiting times reveal additional features not

predicted by the sum-over-states model. Two-dimensional projections of a 3D spectral

solid contain features due to strong excitonic quantum beats even in the co-circular

polarization configuration. Throughout the measurements, we discuss features that

indicate the presence of exciton-exciton correlations.

4.1 Exciton resonance energies and strengths

One of the simplest and most important spectroscopic experiments is an absorption

measurement. Absorption coefficients—effectively a fractional absorption per unit

length at each frequency—can be extracted from absorption spectra. The absorption

spectrum shown in Fig. 4-1(b) was calculated from the two measurements in Fig.
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Figure 4-1: Absorption spectrum of GaAs sample. (a) Spectral intensity measured by
the spectrometer without (black line) and with (red line) the sample inserted. (b) The
unetched, residual substrate has an absorption of αl ∼ 1 across the spectrum. The measured
exciton absorption coefficients are about αH = 5 × 105 cm−1 at 1540 meV and αL =
1.5×105 cm−1 at 1546 meV. (c) Measurements of the H exciton absorption at varying pulse
fluences. Saturation begins to occur at about 103 nJ/cm2. (d) Converting the absorption
to an upper bound for carrier density as described in the text. The minimum fluences at
which nonlinear signals were observed are indicated. The red dashed line reflects a linear
relationship between carrier density and fluence.

4-1(a) as given by the Beer-Lambert law,

α(ω)l = − ln
(

I(ω)

I0(ω)

)
. (4.1)

The energies of the excitons are EH = 1540 meV and EL = 1546 meV. Since the

pathlength is 100 nm, the exciton absorption coefficients are about αH = 5 × 105

cm−1 and αL = 1.5 × 105 cm−1, where we included an estimate that the reflection

losses due to index mismatches at the surface and between layers are about fifty

percent. These values are somewhat higher than previous reports of 104 cm−1 for

bulk GaAs [271, 272] but in agreement with a previous measurement of this sample

[273]. The background absorption is due to excitations in the unetched substrate that

do not interact with the excitons in the wells because the substrate is separated from

the wells by a thick (hundreds of nanometers) Al0.3Ga0.7As barrier. The linewidths

of the features in the absorption spectrum are about 1.5 meV, which corresponds to

a total dephasing time of about 1.5 ps.

The absorption spectrum can be used to estimate the density of carriers excited
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in the sample. As we will see, carrier density estimates using the pulse fluence have

uncertainty. The energy in each laser pulse, Epulse, can be found by measuring the

power of the laser beam and the pulse repetition rate. Using a pinhole at the focus of

the beam where the sample is placed, we can measure the illuminated area, A. (These

values yield the fluence, F . The spectra in Fig. 4-1(a) were measured at a fluence

of ∼30 nJ/cm2.) We estimate the number of photons per pulse, N , by assuming

that each photon has the energy of the heavy-hole exciton, Ephoton = 2.47×10−10 nJ.

Then the number of photons can be computed by N =
Epulse

Ephoton
. The photon density,

p, is given by p = N
A

= F
Ephoton

. Finally, the carrier density, cd, can be estimated from

the absorption by

cd = p × (1 − e−αl)/Nwells, (4.2)

where Nwells is the number of quantum wells, ten for our sample. Panels (c) and (d)

in Fig. 4-1 reveal absorption saturation at fluences above 103 nJ/cm2. This effect will

have consequences in several of the higher-order measurements that were performed

at high fluences. The carrier density saturates at just below 1012 excitons/cm2/well.

This value corresponds to the number of excitons with a Bohr radius of 10 nm that

can fit in 1 cm2.

Three variables make this an upper bound on the carrier density. First—although

we assumed it above—not all of the pulse energy was converted to excitons because

not all of the photons in the pulse were resonant with the H or L excitons. Clearly

this is the case for Fig. 4-1(a) where the pulse bandwidth is about 20 meV. However,

some measurements in the following chapters used pulses with bandwidths less than

10 meV. As an added complication, exciton–free-carrier scattering can cause photons

with energy greater than the exciton energy to be converted from free carriers to

excitons. Therefore, including a spectral density function in Eqn. 4.2 to account for

the overlap between the excitation spectrum and the absorption spectrum may or may

not be accurate. Second, although we did not measure it, the sample reflects a portion

of the input light. We estimated this loss mechanism using index mismatch values.

The third variable is intrinsic to the time-dependent nature of the measurement: the

time at which we define the carrier density. In this work we use the total power

of all the beams that interact the sample. At least one study estimated the carrier

density only using the sum of powers of those beams that were scanned [99]. For

example, the carrier density of a third-order (one-quantum) rephasing measurement

would incorporate only the power in the one beam that was scanned, not all three

excitation beams. This would cause a difference of a factor of three from the densities

reported in this thesis. Unfortunately, most studies simply report a value of the carrier

density; they did not indicate how these three variables were incorporated. The carrier
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density values reported in this thesis did not incorporate a spectral density function,

accounted for reflections using an estimate, and used the total power of all beams.

Careful measurement and analysis of the sample absorption is required to estimate

the carrier density accurately. Our indicated values are upper bounds, perhaps by

as much as one order of magnitude, depending on the pulse bandwidth and number

of fields scanned. The carrier density is an important parameter used to anchor the

experiments because spectral features can change dramatically as the carrier density

changes. We will note some of these changes throughout our results.

4.2 Exciton lifetimes

Transient grating measurements [274–276] are four-wave-mixing measurements in

which the first two fields, Ea and Eb, overlap at the sample to create a spatially

periodic exciton population grating, and, after a variable time delay (τ2), beam Ec

is diffracted by this interference pattern into the background-free signal direction.

The beam geometry is depicted in Fig. 4-2. The scanned time period—which typi-

cally contains only incoherent signals—contains information about the decay of the

eigenstate populations, and by measuring the time-integrated intensity of the emitted

signal as function of delay time, one can extract the lifetimes of the states. The data

set presented in Fig. 4-2 was measured using pulses whose spectral FWHM were less

than 10 meV with a fluence just below 103 nJ/cm2 to generate strong, clean signals

from only H excitons. We constructed a traditional beam splitter and delay stage

apparatus instead of using the COLBERT spectrometer to scan beyond 10 ps. This

is the only measurement in which we did not use the COLBERT spectrometer. A

bandpass filter prevented contributions from the substrate at 820 nm from contribut-

ing to the signal. The lifetime of L excitons can be measured in exactly the same

fashion but with the pulse spectra centered on the L resonance.

The data show an initial nonexponential decay followed by a decay that is fit

with a time constant of 420 ps. The beams had co-circular polarization to prevent

biexciton-exciton emission contributions discussed in the next section. The initial

nonexponential decay was observed previously in studies of quantum dots and was

attributed to surface defects, exciton recombination, and passivation [277]. This non-

exponential decay can be simulated as an overdamped Fano system with two discrete

states and a continuum [198]. In work on quantum dots, the authors also described

a fitting procedure to extract the biexciton lifetime from a fifth-order version of a

transient grating measurement. We have taken preliminary fifth-order measurements

to extract the HH biexciton lifetime, and we observed rapid signal decays similar to
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Figure 4-2: Third-order transient grating measurement of H excitons in the BOXCARS ge-
ometry using co-circular polarization. Time period τ2 was scanned for one nanosecond using
a delay stage. At each delay, the emitted signal was time-integrated with a photodiode. The
pulse spectra were resonant with only the H exciton. After a brief nonexponential decay,
the signal decays with a time constant of 420 ps. In addition to the exciton interactions
that cause the initial nonexponential decay, two Feynman pathways which decay with the
exciton lifetime contribute to this signal.

those observed in Ref. [277].
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Figure 4-3: The three possible pulse timing sequences in third-order measurements and
generalized Feynman diagrams for each sequence. The local oscillator always interacts 1 ps
before the third field interaction and propagates in the signal direction. (left) SI measure-
ments are used to rephase exciton coherences. (middle) SII measurements have population
decays during τ2 and free-polarization decays during τ3. (right) SIII measurements have
two-quantum coherences during τ2 which can be correlated to the emitted frequencies. (di-
agrams) The labels 0, e1, e2, and b represent the ground state, one exciton state, another
exciton state, and biexciton states. When e1 = e2, the diagrams contribute to diagonal
peaks; when e1 �= e2, the diagrams contribute to cross peaks. The biexciton state b can
include pure biexcitons, HH and LL, and mixed biexcitons, HL, depending on the polar-
ization conditions.

4.3 Cross peaks between excitons

We next measure coherent 2D FTOPT spectra using a third-order four-wave-mixing

signal. There are three types of third-order 2D FTOPT scans, and they are dis-

tinguishable by the time ordering of the conjugate field. As depicted in Fig. 4-3,

rephasing scans are those in which the conjugate field interacts first; they are ab-

breviated as SI measurements. Similarly, transient grating (also called virtual echo)

measurements are those in which the conjugate field interacts second, and they are

abbreviated as SII . The third type of scan is different than the first two in regards to

the dynamics during the second time period. When the conjugate field interacts third

in these SIII scans, the first two fields create two-quantum coherences that evolve dur-

ing time period τ2 and which are then projected onto one-quantum coherences that

radiate signal. As we will see in the next chapter, these two-quantum coherences

will allow us to measure two-exciton interactions directly. Representative Feynman

diagrams are shown for each pulse sequence.

The 2D FTOPT measurement shown in Fig. 4-4 is the result of an SI scan in the

BOXCARS geometry when all four fields had horizontal polarization and the spec-

trum covered both the H and L resonances. The pulse fluence was about 102 nJ/cm2.

The conjugate field interacted first with the sample, and the exciton coherences it in-
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Figure 4-4: Rephasing measurements of H and L excitons under co-linear polarization. The
top are the amplitude, real, and imaginary parts of the spectrum from a simulation using
the sum-over-states model incorporating the exciton energies and transition dipole values
found using the linear absorption measurement. The bottom are the amplitude, real, and
imaginary parts of the experimentally measured spectrum. The bold red box surrounds
the amplitude of the experimental spectrum in which we observe the cross peaks between
the H and L excitons. The simulation deviates significantly from the experiment. The
most striking deviations are the phase offset that swaps the real and imaginary parts, the
lack of HL biexciton features in the experiment, the strong vertical stripes present in the
experiment, and the inequality in the experimental cross-peak amplitudes.

97



duced during the scanned time period, τ1, were rephased during the emission time,

τ3. The second time period was not swept but had a constant value of τ2 = 0. As

discussed in Ch. 3, the first time period was swept from 0 to 6 ps in 128 steps and the

carrier frequency was set so that exciton coherences oscillated at slow, rotating-frame

frequencies of less than 10 THz during τ1. The scanned time dimension was subse-

quently Fourier transformed to yield the absorption energies. The emission energies

were detected directly in the spectrometer via spectral interferometry.

For the moment we focus on the amplitude of the measured spectrum outlined in

the bold red box. It shows two diagonal peaks and two cross peaks, reminiscent of

the ‘V’-shaped example system shown in Fig. 2-4 in which two excited states were

coupled through a common ground state. The full field was measured, so in additional

to the amplitude of the spectrum, we can display its real and imaginary parts.

We simulated the spectrum using a set of Feynman diagrams similar to the gen-

eralized diagrams i, ii, and iii in Fig. 4-3. The top row of Fig. 4-4 contains the

amplitude, real, and imaginary parts of the simulated spectrum. Several discrepen-

cies exist between the simulation and the experiment. The most significant is the

phase shift which causes the real part of the peaks to have dispersive lineshapes rather

than absorptive lineshapes. Phenomenological simulations using the modified opti-

cal Bloch equations incorporating EID were able to reproduce this phase shift [139].

A second deviation is the presence of large vertical stripes on the two high-energy

absorption features. The stripes are due to free carriers that initially absorbed, but

then—through exciton–free-carrier coupling—scattered coherently into excitons that

radiated signal. A third difference between the simulation and the experiment is that

the mixed-biexciton–exciton emission features, which are prominent as red-shifted

shoulders in the simulation cross peaks, are almost nonexistent in the experimental

spectrum. Interactions in the sample cause the transition dipoles to these states to be

less than expected. Finally, the cross peaks have equal amplitudes in the simulation

but unequal in the experiment; this difference is due to many-body interactions and

will be discussed more in the next section.

Both the measurement and its simulation were performed under co-linear polar-

ization; this polarization scheme contains all possible signal contributions. It is not

optimal for isolating specific many-body interactions. In the next section we present

results for two polarization conditions in which we excite specific many-body interac-

tions.
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4.4 Exciton correlation spectra

In this section we present the 2D FTOPT measurements and simulations using cross-

linear and co-circular polarization schemes as correlation spectra: the SI and SII

signals are summed to eliminate phase twist and sharpen the features [109, 110, 122,

125, 128, 278]. As with most concepts in multidimensional optical spectroscopy, this

is borrowed from multidimensional NMR spectroscopy [100, 279]. The phase-twisted

shape in the rephasing and nonrephasing signals is due to Fourier transformation

of a signal that evolves with a complex phase in two time periods; this mixes the

absorptive (a) and dispersive (d) components of a spectral peak. Roughly, Re[SI ] =

a(τ1)a(τ3) − d(τ1)d(τ3) and Re[SII ] = a(τ1)a(τ3) + d(τ1)d(τ3), see Sec. 6.5 in Ref.

[100]. If the rephasing and nonrephasing signals contribute equally to the signal,

their sum will eliminate the dispersive contributions1, Re[SI + SII ] = 2a(τ1)a(τ3).

For this reason, correlation spectra have also been called purely absorptive spectra.

Correlation spectra can also be created in a single scan, where one beam contains a

variably delayed pulse pair. Only one signal is then measured; this decreases the data

acquisition time and increases the signal-to-noise ratio [237, 240, 280].

Cross-linear polarized (VHVH) signals do not contain contributions from exciton

population effects such as EIS and EID because the first two fields create two spatially

periodic exciton population gratings that are π phase shifted [281, 282]. It is worth-

while to note that the two exciton gratings are due to a single resonance, for example

the H excitons alone. For simultaneous H and L excitation, there are effectively

four gratings, two for each exciton. Each pair would have a π phase shift between

the constituents. The net result is that there is no exciton population grating, and

therefore signals are weak in this polarization configuration [146]. This polarization

scheme isolates signals due to single excitons H and L, and pure biexcitons HH and

LL. The sum-over-states model did not include signal pathways that lead to mixed

biexcitons, HL, and since exciton-exciton interactions cannot be incorporated, they

were already excluded.

Co-circular polarized (σ+σ+σ+σ+) signals will contain contributions due to EID,

EIS, exciton–free-carrier scattering, and mixed biexcitons. However, contributions

due to pure biexcitons will be eliminated, and this scheme is simulated by eliminat-

ing signal pathways due to pure biexcitons. We expect the simulation and experiments

to differ significantly because the strong exciton-exciton interactions cannot be repro-

1Similarily, their difference would eliminate the absorptive contributions, although to our knowl-
edge this has not been explored. Such a ‘purely dispersive’ 2D spectrum could also be created by
summing the imaginary components of the SI and SII signals. In most nonlinear optical measure-
ments, the imaginary (dispersive) component of a resonance feature corresponds to ε.
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duced using the sum-over-states model. The simulations implicity incorporate strong

Coulomb coupling between the H and L excitons in a manner similar to quantum

coupling through a common ground state, as discussed in Sec. 2.5.

Fig. 4-5(a) shows the simulated spectra for cross-linear polarized fields. Rephasing

spectra, nonrephasing spectra, and their sum—the correlation spectra—are shown

for five τ2 values. These times were chosen because they correspond to peaks and

valleys in the H-L quantum-beat frequency of about 6 meV, or about 1.5 THz. The

advantage of the correlation spectrum is clear; peaks are sharper and the phase twist is

eliminated. Moreover, the HH biexciton-exciton emission pathway in the correlation

spectrum appears as a separate peak rather than as a shoulder. As a testament to

how well this polarization configuration can suppress many-body interactions, our

simulations in Fig. 4-5(a) and experiments in Fig. 4-5(b) agree in almost every

detail. The strongest peak—the H diagonal peak—has an absorptive lineshape in

both cases. The HH biexciton-exciton shoulder to the H diagonal peak has the

opposite sign because it is an excited-state-emission pathway, diagram iii in Fig. 4-3.

The node between these two features remains at a constant angle as τ2 evolves. The

L diagonal peak and the shoulder due to LL biexciton-exciton emission are much

weaker than their H counterparts because the transition dipoles are smaller. The

two cross peaks have similar amplitudes.

The two cross peaks have interesting oscillatory dynamics during τ2 in both am-

plitude and phase. These oscillations are due to pathways—of type ii and v listed

in Fig. 4-3, where e1 �= e2—that involve quantum beats between the H and L ex-

citons during the second time period: an |H〉〈L| or |L〉〈H| coherence. Crucially,

quantum beat pathways contribute to the cross peaks of a rephasing scan (diagram

ii in Fig. 4-3) but contribute to the diagonal peaks in a nonrephasing scan (diagram

v in Fig. 4-3). Thus, at τ2 = 0.29 ps, the rephasing pathway that contributes to

each cross peak is near a minimum, reducing the rephasing signal at the cross peak

coordinates, and therefore the correlation spectrum has less rephasing character. In

both the simulation and the experiment, at these τ2 valleys the nonrephasing and

rephasing pathways are nearly equal. The opposite situation happens at τ2 = 0.67

ps when the rephasing quantum beat pathways are at maxima. The rephasing sig-

nal contributes more strongly than the nonrephasing signal because inhomogeneous

dephasing—which reduces the coherent amplitude—is reversed (meaning rephased)

in the former but not in the latter. The correlation spectrum has strong rephasing

character at these τ2 values, and therefore the nodes in the cross peaks are parallel

to the diagonal and the cross peak amplitudes are strengthened.

All of these effects appear in the experimental spectra in Fig 4-5(b) as well. The
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(a) The real part of the simulated rephasing (R), nonrephasing (NR), and correlation (C) spectra.
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(b) The real part of the experimental rephasing (R), nonrephasing (NR), and correlation (C) spectra.

Figure 4-5: Simulation and experiment of correlation spectra at various τ2 times for cross-
linear polarizated excitation fields.
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biexciton-exciton emission signal appears as a peak rather than as a shoulder in the

correlation spectrum. The nodal angle and amplitude of the cross peaks oscillate, and

they do so because the rephasing pathways oscillate. Another experimental feature

that is replicated by the model is the equal amplitude of the two cross peaks.

Nevertheless, we can note at least two deviations from the simulation. First, the

cross peak oscillations (amplitude and phase) weaken as τ2 evolves in the experiment;

the time during which the excitons can remain coherent is the same exciton dephasing

time—1.5 ps—extracted from the linear absorption experiment. Exciton dephasing

during τ2 was not included in the simulation. Second, the H diagonal peak and

its biexciton shoulder are elongated along the diagonal slightly in the experiment.

This is due to the small amount of inhomogeneous broadening present in our sample

due to well-width fluctuations. This broadening mechanism was not incorporated

in the simulation. On the whole, however, the sum-over-states model describes the

cross-polarization scheme accurately since most many-body interactions, including

exciton–free-carrier scattering and excitation-induced effects, were eliminated.

We now display the same rephasing, nonrephasing, and correlation spectra as

above but for co-circular polarized fields. Simulated spectra are presented in Fig.

4-6(a) and experimental spectra are presented in Fig. 4-6(b). Cross peaks exist in

this polarization configuration, even though the exciton selection rules presented in

Sec. 2.5 indicate that the excitons should be independent two-level systems, similar

to System X in Fig. 2-4. Instead, the existence of the cross peaks indicates that

the two exciton states are coupled, similar to System Y in Fig. 2-4. In this case

the coupling is not due to a common ground state, but is instead due to many-body

interactions. Therefore we included pathways leading to cross peaks in the simulation.

Addionally, since pathways involving HH biexcitons have been suppressed, the H

exciton diagonal features in the rephasing spectra are predicted to have absorptive

lineshapes. However, in the nonrephasing pathway, HL biexciton-exciton emission

can appear as a shoulder on the H exciton diagonal peak. Since the transition dipole

of the HL biexciton is much smaller than that of the HH biexciton, biexciton-exciton

features are much weaker than those in the cross-linear polarization scheme. In the

correlation spectrum, rephasing quantum beat pathways cause the nodal angles and

amplitudes of the cross peaks to oscillate. Here we display spectra with τ2 = 1.95 ps

instead of τ2 = 0.67 ps so that we have spectra measured close to 1 ps intervals.

The experimental co-circular spectra show many deviations from the simulations.

Most striking at τ2 = 0 is the phase shift in the H diagonal feature due to EID [139].

By taking spectra at varying τ2 times, we see the phase shift diminish. The H exciton

diagonal feature loses most of its dispersive character by τ2 = 3 ps, suggesting a decay
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Figure 4-6: Simulation and experiment of correlation spectra at various τ2 times for co-
circular polarizated excitation fields.
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Figure 4-7: Extracted cross peak amplitudes for cross-linear (a) and co-circular (b) polar-
ization configurations as a function of τ2. Red (blue) is H (L) emission feature. The dashed
lines in (a) are extracted from the cross-linear simulation (c) Projection onto the emission
axis of the real part of the H diagonal peak for co-circular polarization at the indicated τ2

values. The thick orange curve is the amplitude of the projection at τ2 = 0. (d) Extracted
phase of same peak at all values of τ2 indicating decay of the EID contribution.

in the EID effect. Simulated features due to HL biexcitons do not appear at all in

the experiment. The cross peaks have different amplitudes in the experiment but

equal amplitudes in the simulation. The nodal angle oscillations in the cross peaks

in the experiment are much weaker than in the simulation. The ratio of the diagonal

and antidiagonal linewidths in the H diagonal feature again reflects the amount of

inhomogeneous broadening present in the sample.

We now analyze many-body interaction dynamics for both polarization conditions.

We extract spectral features due to many-body interactions as functions of time period

τ2 and display the results in Fig. 4-7. The cross peak amplitudes evolve for cross-

linear (a) and co-circular (b) polarization configurations similarily. The traces are

almost identical, indicating that Coulombic coupling in the co-circular polarization

experiment has nearly the same effect as true quantum coupling in the cross-linear

polarization experiment. Moreover, the dashed lines in (a) are extracted from the

cross-linear simulation. They match well, although the quantum beat dephasing was

not incorporated into the simulation. The delay-dependent amplitude modulation

was incorporated, causing the observed decay in the envelope but not damping of

the oscillations. There is one significant difference between the cross-linear (a) and

co-circular (b) cross-peak amplitude data. In the co-circular experiment, the cross
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peak which emits as L is much weaker than the cross peak which emits as H . This

suggests a coherent Coulomb-assisted decay channel from the L exciton to the H

exciton. Nevertheless, the same number of oscillation periods are observed in all four

cross peaks, indicating that although their amplitudes are different, their dephasing

rates are not. This equality in timescales for the quantum beat oscillations indicates

that the Coulomb coupling is strong enough that the decay time is not limited by

the strength of the many-body interaction, but rather is limited by general dephasing

processes.

We also extracted the dynamics of the phase of the H diagonal peak in the co-

circular polarization configuration. Fig. 4-7 parts (c) and (d) describe the dynamics;

these data can only be extracted from correlation spectra. Rephasing or nonrephasing

spectra alone would have additional dispersive wings due to phase twist. The four

traces shown in (c) were produced by projecting a neighborhood around the H diag-

onal peak of real part of the correlation spectrum onto the emission axis as indicated

by the box in Fig. 4-6(b). At τ2 = 0, the blue line in Fig. 4-7(c) indicates the disper-

sive lineshape. As τ2 evolves, the lineshape becomes increasingly absorptive as shown

by the green, red, and black lines at τ2 = 1, 2, and 3 ps, respectively. We also display,

using the thick orange curve, the amplitude of the projection of the peak at τ2 = 0.

We averaged the phase of the same neighborhood around the H diagonal peak. This

radial phase was converted to an angle, and this angle was monitored as a function of

delay time τ2 and is displayed in part (d). An angle of 90◦ indicates a completely dis-

persive peak and an angle of 0◦ indicates a completely absorptive peak. Interestingly,

the transition from dispersive to absorptive does not appear to be an exponential

decay. Since the EID effect is responsible for the dispersive character, we conclude

that this decay corresponds to the duration of the EID effect. The short timescale

may be surprising because the EID effect is seemingly due to exciton populations,

which are long-lived. The rationale for the short timescale is that this is still manifest

in a coherent signal, and in fact, in the nonlinear exciton equations this effect is a

four-particle correlation [143]. Finally, we should comment on the co-circular spectra

at τ2 = 3 ps. Although both the simulation and the experiment are absorptive in

character, the former indicates that the peak should be positive going (red) while the

latter shows a negative-going peak (blue). This indicates that an additional π phase

shift is present, possibly due to incomplete decay of the many-body interaction.

We can attempt to understand the EID decay using the modified optical Bloch

equations, Eqn. 2.45. Advanced simulations could reveal if either γ′ or N is time-

dependent, or both. A previous experiment suggests the answer. From the transient

grating experiment described earlier in this chapter, we observed a rapid signal decay
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at early τ2 times. Thus N in the equations is in fact time dependent: N(τ2). It is

possible that N(τ2 = 3 ps) corresponds to the time when the product γ′N(τ2 = 3 ps)

contributes the small residual (5◦) phase and the additional π phase to the emitted

signal. Another possibility, which we intimate here, is that the EID term itself is

time dependent, γ′(τ2). An experiment could distinguish between the two situations

in the following manner. Because the τ2 time period does not contain oscillations

at optical frequencies for either the SI or SII pulse sequence—and thus does not

require interferometric stability—we can construct a new apparatus that incorporates

a mechanical delay stage. It would then be feasible to measure 2D FTOPT correlation

spectra like those shown in Fig. 4-6(b) for τ2 delays up to one nanosecond, as was done

in the transient grating experiment. One added advantage to using a delay stage for

the τ2 delay is that there will not be a delay-dependent amplitude modulation decay

during this time period. If the phase decay follows the transient grating decay, this

would suggest that γ′ is not time dependent.

4.5 Exciton quantum beats in a 3D spectrum

The COLBERT spectrometer is capable of scanning multiple time dimensions. In

this experiment, we perform scans similar to those presented in the previous section

except we Fourier transform the oscillations during time period τ2 to yield a 3D

spectral solid2. To investigate the quantum beats between the excitons, in Fig. 4-8(a)

we present three projections of the SI co-circular measurement. This measurement

was performed by stepping the second time period in 40 steps from 0 to 2 ps, and at

each step scanning the first time period in 128 steps over 4 ps. All possible Feynman

pathways are illustrated; the four pathways involving biexciton–exciton emission,

diagrams ix − xii again contribute minimally.

The first projection—the projection onto the (h̄ω1, h̄ω3) plane—is similar to a

typical SI scan and shows two diagonal peaks (described by pathways i, ii, v, and vi)

and two cross peaks (described by pathways iii, iv, vii, and viii). It is not exactly

equivalent to a 2D SI measurement because the 2D experiment was performed at one

specific value of τ2; this projection of the 3D solid is integrated across the h̄ω2 axis.

The stretching of the two diagonal peaks reflects the inhomogeneous broadening; the

diagonal linewidth FWHM for the strong feature from the H exciton is 2.2±0.1 meV

2In this section and the 3D measurements in the next chapter, quantum beats appear at about
8 meV rather than 6 meV because the 3D data was acquired two years before most of the other
measurements presented in this thesis. In the ensuing time, the sample was removed, cleaned, and
remounted in the cryostat several times, meaning that a variety of experimental conditions—such
as thermal contact and pressure from the bolts holding the sample in place—changed.
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and its antidiagonal (homogeneous) linewidth FWHM is 1.1±0.1 meV. The other

diagonal feature is far weaker because the L exciton transition dipole is one-third

that of the H exciton as measured in the linear absorption. Many of the features

in this projection, such as the relative brightness of the cross peaks and the vertical

stripe, were described in detail previously in this chapter and elsewhere [143].

Since SI scans are usually void of coherent oscillations during the second time

period, most of the peaks on the corresponding energy axis, h̄ω2, are at zero frequency.

However, because two Feynman paths contain quantum beats [56, 144, 145, 283]

during τ2, a small peak is seen at the difference frequency. The (h̄ω2, h̄ω3) projection

created by integrating through the absorption (h̄ω1) axis shows H and L oscillations

at their expected energies on the h̄ω3 axis. All of the diagrams except iii and vii

indicate features that do not oscillate during τ2. Indeed this is seen in the (h̄ω2, h̄ω3)

projection, as the most intense peaks appear at the zero value of the h̄ω2 axis. The

small peaks near ±8 meV along the h̄ω2 axis are due to pathways iii and vii, where

the oscillations are quantum beats between the two coupled exciton states. It is worth

reiterating that in the co-circular polarization configuration, the cross peaks are due

to pure Coulomb correlations. The (h̄ω1, h̄ω2) projection is inaccessible in standard

2D FTOPT measurements. The most intense portions at zero frequency on the h̄ω2

axis are due to the majority of the pathways. The weak peak at −7.9±0.1 meV is due

to pathway vii and the shoulder with a positive energy value is due to pathway iii.

The difference in relative intensities of these quantum beat peaks is due to exciton

interactions in the system.

In addition to the amplitude spectra presented in Fig. 4-8(a), the real parts are

presented in Fig. 4-8(b). All of the features—even quantum-beat pathways—are

dispersive, even though the spectra are a result of summing several experiments in

which the dispersive nature was decaying, as was observed in the previous section.

This should perhaps not be surprising because we have observed that Coulomb cor-

relations can cause phase shifts, and this peak is due to a pure Coulomb correlation.

A cross-linear 3D SI measurement, which we have not performed due to low signal

levels, would be interesting because in that case the cross peaks are due to quantum

coupling, not Coulomb correlations. Regardless, simulations using any method—all

three methods will require extensive computation time—would provide a valuable

reference point.
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(a) Projections and Feynman diagrams for a 3D SI co-circular polarization measurement. The
(h̄ω1, h̄ω3) projection is obtained by integrating over the full range of h̄ω2 energies. It is similar to
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due to pathways described by diagrams iii and vii. The four pathways involving biexcitons, ix–xii,
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(b) The real parts of the projections of the co-circular SI 3D spectral solid. All
of the features, even the quantum beat features due to pathways iii and iv, have
dispersive lineshapes.

Figure 4-8: The amplitudes and real parts of the projections of the co-circular SI 3D spectral
solid.
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4.6 Hints of higher-order correlations

The spectra presented in this chapter revealed many important parameters of the

excitons in this system, and several many-body interactions were manifest in the

signals. We extracted the exciton energies, their absorption coefficients, and total

dephasing times from the linear absorption spectrum. Absorption measurements at

increasing fluences revealed a saturation effect that occurs at a carrier density cor-

responding to the point at which excitons have completely filled the quantum wells.

The transient grating measurement—which should have shown a strictly monoexpo-

nential decay with the H exciton lifetime—showed a sharp initial drop followed by

the monoexponential decay.

Many one-quantum 2D FTOPT measurements were performed. We observed that

cross peaks were present in co-linear spectra, indicating that the H and L excitons are

coupled. The spectra also showed several unexpected features that were investigated

further using cross-linear and co-circular polarization schemes. The cross-linear mea-

surements showed cross peaks with rocking nodal-plane angles and oscillating ampli-

tudes in the correlation spectrum, and these were shown to be due to quantum beats.

In the co-circular correlation spectra measured at varying τ2 times, the H exciton

diagonal feature initially had a dispersive character that evolved into an absorptive

character after about 3 ps, revealing a decay in the EID contribution. Simulations

using the modified optical Bloch equations or the nonlinear exciton equations may be

able to reproduce this decay. Finally, the 3D spectral solid measured using co-circular

polarization revealed features that are Fourier transforms of quantum beats during

τ2. These peaks, which appear at h̄ω2 = ±8 meV, also have dispersive character.
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Chapter 5

Four-particle correlations

In this chapter we investigate two-exciton correlations using a variety of two-quantum

scans, some of which use the SIII pulse sequence described in the previous chapter.

The spectra show features due to both bound biexcitons and unbound-but-correlated

exciton pairs. At third order we measure the binding energies and dephasing rates of

bound biexcitons, and we confirm the suggestion from Sec. 2.4 that the value of the

binding energy depends on how it is measured. We also measure the dephasing time of

unbound two-excitons, which are present in two-quantum signals unless polarization

control is used to suppress them. We selectively integrate a 3D FTOPT spectral solid

around the mixed biexciton features to reveal a peak that had been obscured, and

this peak reveals a many-body interaction manifest in its amplitude. At fifth order,

we investigate inhomogeneity and dephasing using two-quantum rephasing pulse se-

quences. The unbound two-exciton feature changes with the laser fluence, indicating

the presence of still higher-order correlations.

5.1 Third-order two-quantum coherences

Four-wave-mixing measurements in which two-quantum coherences are correlated to

radiative one-quantum coherences using the SIII pulse sequence were demonstrated

first in 2D IR [284] to extract vibrational anharmonicities. This sequence has now

been used in the visible to investigate properties of two-exciton correlations and

molecular excited states [99, 145, 148, 156, 157]. One kind of two-exciton correla-

tion is a biexciton. Biexcitons in GaAs quantum wells were first observed in 1982

[90], and the biexciton binding energy—measured as the difference between single

exciton emission and biexciton-exciton emission—was 1.5 meV. Here we use the SIII

sequence to isolate biexciton coherences spectrally so that their properties can be

measured directly. Other peaks appear along the two-quantum axis due to unbound-
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Figure 5-1: Third-order two-quantum 2D spectra measured in the BOXCAR beam geome-
try. The two diagrams that contribute to the pure biexciton peaks are depicted. The LO
interacts 1 ps before the final excitation pulse. Spectra measured for cross-linear and co-
circular polarization configurations are in contrast. The two binding energies for the HH
biexciton extracted from the cross-linear measurement are ΔB = 1.0 meV and ΔB∗ = 1.5
meV.

but-correlated two-excitons and due to exciton–free-carrier scattering. Polarization

control and unconventional pulse timing sequences allow us to isolate specific signals.

Two-quantum spectra were measured using cross-linear, cross-circular, co-linear,

and co-circular polarized input fields. In co-circular (co-linear) measurements, all

four fields were given the same circular (linear) polarization while in cross-circular

(cross-linear) measurements the first two fields (the two nonconjugates) had opposite

circular (linear) polarization and the final two fields (the conjugate and the LO)

were also oppositely circularly (linearly) polarized. 2D FTOPT measurements were

performed by stepping τ2 in 128 steps from 0 to 2 ps, and 3D FTOPT measurements

were performed by stepping τ2 in 64 steps from 0 to 2 ps and at each step scanning

the first time period in 64 steps over 4 ps.

In Fig. 5-1, the spectra were measured using the BOXCARS geometry with an

SIII pulse timing sequence. Two amplitude spectra are presented. The first was

measured using cross-linear polarization, VHVH, with a pulse spectrum set to excite

only the H exciton. Signals due to exciton–free-carrier scattering and unbound-but-

correlated exciton pairs are suppressed in this polarization configuration. Thus, only

two pathways contribute to this signal. In the first pathway, fields Eb and Ec create the

two-quantum coherence, |2〉〈0|, and field Ea projects that coherence onto a radiative
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single-quantum coherence between the exciton and ground states, |1〉〈0|. The second

pathway involves a radiative biexciton-exciton coherence, |2〉〈1|, during the last step

because the final field interaction acts on the right side of the diagram. Thus, the

cross-linear amplitude spectrum shows a strong peak due to the first pathway and a

weaker peak with the same two-quantum energy but with a red-shifted emission. The

HH biexciton dephasing time is about 2.5 ps, and we have shown that this dephasing

time depends slightly on the pulse fluence [99], indicating the presence of higher-order

correlations.

From this spectrum we can measure the HH biexciton binding energy in two

ways. For noninteracting systems, such as an anharmonic oscillator, the two methods

should yield identical values. The first method is the difference between the measured

two-quantum energy and twice the measured single quantum energy, ΔB in Fig. 5-

1. This value is 1.0 ± 0.1 meV. The second method uses the difference between

the single exciton emission and the biexciton-exciton emission as shown by ΔB∗ .

This is the manner in which the biexciton binding energy was first measured in

photoluminescence experiments [90], and we also measure a value of 1.5 ± 0.1 meV.

Remarkably, the Coulomb interactions cause the two values to differ because the

second is weighted by the transition dipole between subsets of exciton and biexciton

correlations as was shown in Eqn. 2.63.

The second spectrum displayed in Fig. 5-1 was measured using co-circular polar-

ization. Two-quantum signals due to pure biexcitons were suppressed in this polariza-

tion configuration. The pulse excitation spectrum was resonant with both the H and

L exciton energies so that pathways involving mixed biexcitons, HL, were not sup-

pressed. The polarization scheme also allows unbound-but-correlated exciton pairs

and exciton–free-carrier scattering to contribute to the signal. The unbound-but-

correlated exciton pair signal is the result of Coulomb interactions between excitons

that can be phenomenologically modeled as EIS [148, 273], and the exciton–free-

carrier scattering signal is due to Coulomb interactions between excitons and free

carriers that can be phenomenologically modeled as EID. The mixed biexciton has a

binding energy, ΔHL
B of 1.4 ± 0.2 meV and a dephasing time of about 1.5 ps.

To investigate these two-quantum coherences further, in Fig. 5-2 we display the

real part of the two-quantum signal for all four polarization conditions. From left

to right, the polarization conditions increase the contributions due to many-body

interactions and decrease contributions due to pure biexcitons. The cross-linear po-

larization spectrum shows one main feature with positive and negative lobes due to

interference and overlap between the two pathways involving HH biexcitons shown

in Fig. 5-1. The cross-circular polarization spectrum shows those two features but
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Figure 5-2: Real parts of third-order two-quantum 2D spectra. Four polarization conditions
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with an additional phase factor that moves the peaks slightly and causes a third lobe

to appear. This additional phase factor is due to interference by a small amount of

unbound-but-correlated exciton pair (HH∗) signal, which does appear in the cross-

circular polarization configuration [147]. The cross-circular spectrum also shows sig-

nificant signal due to exciton–free-carrier scattering at two-quantum energies above

3085 meV. The co-linear spectrum has the same interference at the HH biexciton fea-

ture, and it has a significant node between the HH biexciton feature and the features

at higher two-quantum energies. This is due to the presence of several signals that

are out of phase with each other but that overlap in two-quantum energy. Unbound-

but-correlated exciton pairs, mixed biexcitons, and exciton-continuum scattering are

three effects that appear in this part of the spectrum. As we will see later in this

chapter, projections of the two-quantum 3D FTOPT spectral solid can isolate some

of these overlapping signal pathways. The co-circular spectrum has no signal due to

pure biexcitons, and the peaks appearing on the two-quantum diagonal are due to

HH∗ and LL∗. Since mixed biexcitons have weak biexciton-exciton emission signals,

in the co-circular scan the feature due to the mixed biexcitons has an absorptive line-

shape, unlike the HH biexciton peak whose biexciton-exciton shoulder contributes

strongly, causing the peak to appear to be dispersive. We will return to a discussion

114



of this lineshape in Sec. 5.3.

A three-dimensional spectral solid for a cross-circular SIII measurement is shown

in Fig. 5-3, where each energy axis is labeled by its corresponding time period.

While it is clear that the peak is around 1540 meV for both the h̄ω1 and h̄ω3 axes and

near 3080 meV for the h̄ω2 axis, this plot is not convenient for extracting detailed

information because it is difficult to view. The three projections created by integrating

along specified ranges of particular axes are more useful.

The projection onto the (h̄ω1, h̄ω3) plane shows the expected two peaks that are

slightly separated due to the biexciton-exciton emission red shift. The projection

onto the (h̄ω2, h̄ω3) plane is similar to the normal 2D SIII plot [99, 285]. The peak

just below the diagonal line of slope two appears at coordinates that give a binding

energy of 1.1±0.1 meV. The same value for the HH biexciton binding energy is

extracted from the location of the peak in the (h̄ω2, h̄ω1) projection shown, only

now the two pathways are part of a single peak. Thus it is clear that projections

of the spectral solid can be utilized to separate peaks that overlap in two-quantum

2D FTOPT measurements. Spectral solids can be further exploited by slicing or

projecting along axes other than the three frequency axes. For example—although

we do not demonstrate it here—an SIII scan can be sliced through the diagonal of the

(h̄ω1, h̄ω3) plane and displayed against h̄ω2. This projection would show the subset of

excitons which both absorbed and emitted at the same frequency, and would correlate

them to the two-quantum axis, potentially enhancing spectral resolution.

We present projections of an SIII co-circular spectral solid in Fig. 5-4 to show

how overlapping Feynman pathways can be separated using 3D spectroscopy. In

doing so, we reveal a mixed biexciton peak that was obscured. The two pathways

we wish to separate are indicated by the different time-orderings in pathways i and

ii. Both create mixed biexcitons in the second time period and then emit at L,

but pathway i has initial absorption in H while pathway ii has initial absorption

in L. Figure 5-4(a) is the projection of the 3D SIII co-circular spectral solid onto

the (h̄ω1, h̄ω3) plane. The four pathways are visible as separate peaks, although

many-body interactions such as exciton–free-carrier scattering are also present in

these features. The (h̄ω2, h̄ω3) projection is shown in Fig. 5-4(b), and it is similar

to a 2D SIII measurement. The most prominent feature due to HH∗ is located at

exactly twice the H exciton frequency on the two-quantum axis and at the H exciton

frequency on the emission axis. The peak appears shifted below the diagonal because

of interference with the mixed biexcitons. The analogous feature involving L excitons,

LL∗, is weaker because of the lower L exciton transition dipole.

The mixed biexciton features appear between the two unbound features on the
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Figure 5-4: Projections of the 3D SIII co-circular spectral solid. The projection shown in (a)
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also indistinguishable, are masked by the interaction-induced feature. The spectrum shown
in part (c) is the projection onto the (h̄ω2, h̄ω1) plane, integrated over the entire h̄ω3 axis.
Pathways ii and iv now form a single peak, and pathways i and iii, which do the same,
are largely obscured. (d) The spectral solid is again projected onto the (h̄ω2, h̄ω1) plane
but integration was limited to h̄ω3 energies around L and h̄ω2 energies around the mixed
biexciton. Diagrams i and ii are now separated from each other without interference from
the other pathways or the strong interaction-induced feature.
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h̄ω2 axis at slightly less than the sum of the H and L exciton energies, and at the

L or H emission energy depending on whether the final process is L or H exciton

emission (pathways i and ii or iii and iv, respectively). The spectrum in part (c)

is the projection onto the (h̄ω2, h̄ω1) plane showing that the mixed biexcitons that

absorbed the first field at H destructively interfere with the stronger HH∗ feature,

and are obscured by the resulting node. Similar interference may occur between the

mixed biexcitons that absorb the first field at L and the LL∗ feature, but since this

feature is weak, the biexciton feature is largely unaffected. As an added difficulty

in isolating pathway i from ii, the features from pathways iii and iv superpose with

them in this projection.

Therefore in part (d) we hone in on the two pathways of interest by viewing the

projection in the same (h̄ω2, h̄ω1) plane, but instead of integrating over all emission

energies, we integrated over only the L exciton emission energy. This separates path-

way i from iii and pathway ii from iv since i and ii emit at L while iii and iv emit

at H . It also largely removes the strongest unbound feature, HH∗, which also emits

at H . A projection in the same plane with h̄ω3 integrated only over energies around

H would similarily isolate mixed biexciton pathways iii and iv, although the feature

from pathway iv would still be as obscured by the interference with the HH∗ feature

as it is in part (b). The plot in (d) is also cropped in the h̄ω2 dimension to include

only the energies within the range of mixed biexciton features to eliminate the tail

of the strong HH∗ feature. In part (d), pathways i and ii are clearly distinguishable

now that the unbound features and pathways iii and iv are suppressed. The peak

corresponding to pathway ii is roughly 60% brighter than the peak corresponding to

pathway i and their h̄ω1 linewidths are equal, with FWHMs of 2.6±0.1 meV. The

h̄ω2 linewidths are also similar: pathways i and ii have FWHMs of 9.0±0.2 meV and

8.9±0.1 meV, respectively, giving the mixed biexciton dephasing rate.

In this section we isolated and measured features due to biexcitons and unbound-

but-correlated exciton pairs in several third-order SIII 2D FTOPT spectra. Although

the signals reveal significant insights, additional information can be learned by using

phase-windows to enhance two-quantum features [254, 255]. In these measurements,

selectively removing or phase-shifting bands of the spectra can increase the absorption

rate into desired two-quantum states. In this manner, mixed biexciton features—

which are difficult to observe even in 3D measurements—can be enhanced.
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5.2 Fifth-order two-quantum rephasing spectra

The above results from third-order two-quantum spectroscopy revealed information

about four-particle many-body interactions. We extracted the binding energies and

dephasing times for various biexcitons. We also observed unbound-but-correlated

exciton pairs. However, more information can be gained about the two-quantum

phenomena using additional fields to generate higher-order signals. In this section,

we show how fifth-order signals1 created through a two-quantum rephasing pulse

sequence allow us to investigate inhomogeniety and dephasing in more detail. Notably,

the HH∗ feature exhibits strong inhomogeneity that varies with the pulse fluence.

We measure the fifth-order signals using the Y-shaped beam geometry illustrated

in Fig. 5-5. Although five fields interact with the sample and many field parameters

could be varied, in the present measurements only the time period (τ2Q) between the

conjugate fields (Ea and Eb) and the final field (Ec) is scanned. The final three field

interactions—all due to one laser beam, Ec—convert the two-quantum coherences

created by beams Ea and Eb to radiative one-quantum coherences. The laser was

adjusted to create near-transform-limited pulses of 150 fs in duration, centered at

1534 meV, with a FWHM of about 11 meV. The pulse spectra are set so that only

resonances involving H excitons appear; resonances involving L excitons, such as

mixed biexcitons, are suppressed. This unconvential beam geometry, detailed in Fig.

3-5, would be difficult to generate using standard approaches involving static diffrac-

tive optics. The COLBERT spectrometer—with its reconfigurable beam shaper—can

generate the geometry with ease.

We show spectra measured using three different polarization configurations. The

first spectrum, measured with co-linear polarized pulses, shows peaks due to both

types of two-quantum coherences. The second spectrum, measured with cross-linear

polarized pulses, suppresses the unbound-but-correlated feature to reveal only biex-

citon coherences. The third spectrum, measured with co-circular polarized pulses to

suppress biexciton coherences, allows us to explore the dynamics of the unbound-but-

correlated two-exciton coherences. Finally, we use two different theoretical models to

simulate the signals and to help us determine which many-body interactions produce

the observed spectral features.

The first spectrum is measured using co-linear polarized pulses. The fluence

was 103 nJ/cm2 for the co-linear and cross-linear measurements, and varied for the

co-circular measurements. Both biexciton (HH) and unbound-but-correlated two-

1As we will see, the signals are at least fifth-order in the electric field because of spectral features
that change with increasing fluence. Since spectral features not limited to the signal amplitude vary
with the pulse fluence, this indicates the presence of higher-order signals.
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Figure 5-5: The fifth-order Y-shaped measurement. Fields Ea and Eb interact first,
followed—after a variable delay (τ2Q)—by field Ec to generate a phase-matched signal in
the 3kc − ka − kb direction. The Feynman diagrams illustrate the three possible emissive
coherences.

exciton (HH∗) coherent oscillations are measured during time interval τ2Q in the

co-linear polarization configuration. The amplitude of the spectrum, Fig. 5-6(a), has

a node between the two features, distorting them such that their peaks are farther

apart than their energy separation. Multiexciton emission is visible as a red-shifted

shoulder on the biexciton peak. The real part of the spectrum, Fig. 5-6(b), shows

that the biexciton feature has an absorptive lineshape and the unbound feature has a

dispersive lineshape. The interference between the two signals results in an entwined

lineshape and makes analysis difficult.

In the cross-linear polarization measurement, all of the fields have horizontal polar-

ization except field Ea, which has vertical polarization; we measure identical spectra if

only field Eb is vertically polarized or if only field Ec is vertically polarized. The main

feature due to biexciton coherences in the amplitude of the spectrum, Fig. 5-6(c), is

shifted below the diagonal (a red-shift) by an amount equal to the biexciton–ground-

state binding energy (ΔB), which we measure to be 1.2±0.2 meV. The two-quantum

linewidth appears to have increased relative to the co-linear polarized spectrum. We

show below that this elongation is due to local field effect (LFE). The red-shifted

shoulder on the biexciton peak is due to the energy difference between the radiative

exciton–ground-state coherence and the multiexciton radiative emission coherences.

Because the three pathways overlap, we cannot separate the different emission ener-

gies. Unlike in third-order rephasing spectra of single excitons where the nodes are

parallel to the diagonal [146], the nodes in Fig. 5-6(d) are slightly tilted. Finally, we

note that the peak is not elongated along the diagonal, indicating a lack of biexciton
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Figure 5-6: Experimental 2D spectra measured using the pulse sequence and geometry
shown in Fig. 5-5 for three polarization configurations. Dashed lines are two-quantum
diagonals, E2Q = 2Eemit. Amplitude (a) and real (b) parts of the spectrum for co-linear
polarized fields show both HH coherences and HH∗ coherences. Cross-linear polarized
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herences in the amplitude (c) and real (d) parts of the spectrum. Real parts of the spectra
for co-circular polarized fields at low (e) and high (f) pulse fluences. The arrows indicate the
antidiagonal. (g) Result of ten co-circular measurements with varying fluences. The peak
broadens—mostly homogeneously—(filled black squares) and blue-shifts (open red circles)
as the fluence increases.
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inhomogeneity.

Fig. 5-6(e) and (f) are the real parts of the spectra, displaying only the HH∗

feature, measured using co-circular polarization at low (1 × 103 nJ/cm2) and high

(2.5 × 104 nJ/cm2) pulse fluences. In both spectra, the lineshapes are dispersive and

the nodes are again not parallel to the diagonal. The peak has elongated diagonally by

a small amount and has elongated antidiagonally by a large amount. The peak blue-

shifts by about 1 meV along the two-quantum diagonal at higher powers, indicating

the presence of EIS. To investigate these changes further, we measured co-circular

spectra at ten different pulse fluences. Fig. 5-6(g) shows how the linewidth ratio

(antidiagonal/diagonal) and the position of the emission energy maximum change

with pulse fluence. As the fluence increases, the diagonal linewidth increases 14%

from 3.6 to 4.1 meV and the antidiagonal linewidth increases 140% from 1.0 to 2.4

meV. At higher fluences, the carrier density increases and then saturates according

to Fig. 4-1(d). As the density increases, more scattering occurs and therefore the

coherence dephases more quickly; the antidiagonal linewidth measures this dephasing.

This variation indicates the presence of many-body interactions that can be viewed

as an EID effect. The increase in inhomogeneous dephasing could be due to Pauli

blocking [213]. It may be possible to investigate this unexpected increase by selectively

eliminating the appropriate term in the nonlinear exciton equations.

The tilts, elongations, and energy shifts in the spectra all indicate the presence

of many-body interactions. We use two theoretical models to help understand these

subtle spectral features. As described in Sec. 2.3, the sum-over-states model treats

the excitons and multiexcitons as isolated states. This simplified approach reproduces

only the features due to non-interacting particles. The phenomenological model starts

with the isolated states and can incorporate interactions due to EID, EIS, and LFE.

Here the modified optical Bloch equations have been extended to fifth-order. The pur-

pose of these calculations is not to simulate the signal rigorously using the nonlinear

exciton equations, but to extract physical insights by identifying which phenomeno-

logical many-body interactions contribute to the experimental spectra.

Calculations using the sum-over-states method result in the spectrum in Fig.

5-7(a). Exciton–ground-state pathways and both biexciton-exciton and triexciton-

biexciton emission pathways—all three are shown in Fig. 5-5—are included in this

cross-linear spectrum. The pathways are weighted by the number of field permuta-

tions: three exciton–ground-state, three biexciton-exciton, and one triexciton-biexciton

pathways contribute to the signal. Triexcitons will be discussed in the next chapter,

but for now, it is sufficient to state that the nodes do not appear in the correct lo-

cations and the lobes do not have the correct relative intensities if this pathway is
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Figure 5-7: Fifth-order Y-shaped simulations. (a) Result of a calculation using the sum-
over-states model for cross-linear polarized fields. This model produces no peak for the
co-circular polarization configuration. (b) Result of calculations using the phenomenolog-
ical model for cross-linear polarized fields. This model captures subtle tilts and vertical
elongations by including LFE. (c) and (d) Result of calculations using the phenomenolog-
ical model for co-circular polarized fields at low and high fluence, respectively. The model
incorporated EIS to generate the features; only states g and X were included.

not included. Although this model qualitatively reproduces the number of nodes,

their locations, and their relative intensities, there are several deviations from the

experimental spectrum. The multiexciton emission feature is blue-shifted along the

two-quantum axis from its experimental location; the slight tilt of the nodes is not

captured; and the distinct vertical elongation is not present. A co-circular spectrum is

even more problematic: Because the unbound feature is not a state, no peak appears

at all!

The modified optical Bloch equations reproduce the experiment more accurately

by including terms to represent the many-body interactions. The energies of the states

are still input manually into the Hamiltonian, unlike in first-principles calculations

where the Coulomb coupling matrix directs the exciton and multiexciton binding

energies as described in Sec. 2.4. The cross-linear simulation used the four-level

Hamiltonian, Eqn. 2.31, while the co-circular Hamiltonian included only two states:

g and X. Here, we derive explicit equations of motion for density matrix elements

using the quantum-Liouville equation as described in Sec. 2.3. Briefly, the coupled

differential equations, up to the fifth-order field interaction, are truncated and selected

for the approriate signal propagation direction according to spatial Fourier expansion

of the density matrix elements [199]. We then include terms to represent EID, EIS,

LFE, and the binding energies. We include inhomogenous broadening by summing

spectra calculated with a range of exciton energies. The cross-linear spectrum, Fig.

5-7(b), does not include EID or EIS because they are suppressed in this polarization

scheme. However, LFE can still contribute to the signal, and their inclusion stretches

the peak vertically and tilts the nodes, yielding a better match to the experiment.
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Figure 5-8: Fifth-order two-quantum rephasing measurements for co-circular polarization.
(a) Feynman diagrams that contribute to the two HL peaks. (b) The excitation fields were
resonant with both the H and L excitons, and six features are observed. Two of the features
are due to unbound L exciton pairs, LL∗, two are due to unbound H excitons pairs, HH∗,
and two are due to mixed biexcitons, HL. (c) Magnified view of two features showing the
absorptive nature of the HL peak and the dispersive nature of the HH∗ peak.

Features in the spectrum measured in the co-circular polarization configuration, Fig.

5-7(c) and (d), are largely reproduced with an EIS term, although adding small

amounts of EID and LFE cause the vertical stretching. The fluence in (c) was 2 ×
103 nJ/cm2 and the fluence in (d) was 1.6 × 104 nJ/cm2. The simulations show

that the fifth-order measurements provide sensitive indicators of distinct many-body

interactions, and they add to the insights offered by third-order spectroscopic features.
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5.3 Fifth-order two-quantum rephasing of mixed

biexcitons

In the next measurement, we adjusted the laser so that the pulse spectrum covered

both the L and H transitions to investigate the mixed biexciton rephasing; the fluence

was about 103 nJ/cm2. A co-circular polarization measurement is presented in Fig.

5-8. There are six main features in the amplitude of the spectrum and its real part

in part (b). The two features at about 3080 meV are due to HH∗, the two features

at two-quantum energies near 3086 meV are due to mixed biexcitons—specifically

pathways i and ii—and the two features at about 3092 meV along the two-quantum

axis are due to LL∗. The real part of the spectrum is magnified in part (c) around the

HH∗ and HL features in the two-quantum axis and around the H exciton emission

energy. The absorptive lineshape of the HL feature is in stark contrast to the disper-

sive character of the HH∗ feature. This phase shift indicates that the two features

have different microscopic origins, which can be related to the four-particle correlation

term in the nonlinear exciton equations, Eqn. 2.63. Different Coulomb matrix values,

Vab, will weight the polarization terms that drive the two-quantum coherence, p
he[kb]
ab ,

differently to cause the different energies and phases of the two types of four-particle

correlations. The mixed biexcitons report this phase shift nicely since multiexciton

emission is limited due to low transition dipole values (as compared to the HH biex-

citons in the previous section). In other words, pathways i and ii dominate the HL

features in Fig. 5-8(b) and (c) while pathways iii − vi contribute minimally.

5.4 Simulated fifth-order two-quantum correlation

spectra

The five fields used in fifth-order measurements make it possible—using a suitable

geometry and correct pulse timing schemes—to perform two-quantum rephasing and

two-quantum nonrephasing measurements and sum them to create a two-quantum

correlation spectrum just as was done at third order. In the simplest case of scanning

a pair of field interactions relative to the three time-coincident field interactions, there

are more pathways leading to nonrephasing signals than those that lead to rephasing

signals. Thus a time delay beyond the pulse duration between the fourth and fifth

pulses is introduced; in this simulation the time delay, τ4, was 250 fs. This time

delay is needed in both the rephasing and nonrephasing measurements so that the

signals are weighted equally in terms of the number of diagrams which contribute
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in the sum-over-states model. In both signals, one pathway leads to |3〉〈2| emission,

three pathways lead to |2〉〈1| emission, and three pathways lead to |1〉〈0| emission. In

either case, there are two time orderings for the pathways involving |1〉〈1| population

decays during τ4.

In Fig. 5-9, we present simulations of a cross-linear polarization measurement of

two-quantum rephasing, two-quantum nonrephasing, and their sum, the two-quantum

correlation spectrum using the sum-over-states model. Here cross-linear means that

only pure HH biexcitons are measured. This requires restricting the spectrum to

only the H exciton resonance. One acceptable polarization configuration is that field

Ea is perpendicular to field Eb, field Ec is perpendicular to field Ed, and field Ea is

perpendicular to field ELO.

Fig. 5-9(d) incorporates the triexciton-biexciton emission pathways. The inserted

binding energies resulted in a value of 1.5 meV as the biexciton-exciton red-shift

and a value of 0.7 meV as the triexciton-biexciton red shift. There are seven total

diagrams for each spectrum. In both cases, three have exciton–ground-state emission,

three have biexciton-exciton emission (which, because of the odd number of field

interactions on the right-hand side of the Feynman diagram, will be of opposite sign),

and one pathway has triexciton-biexciton emission. This final pathway will have the

same sign as the exciton–ground-state emission. Fig. 5-9(e) shows a simulation using

the same model but excludes the triexciton-biexciton emission pathway. In this case

there is no asymmetry in the correlation spectrum, and the two peaks have equal

intensity but opposite sign.

The advantage of the correlation spectrum is that removing the phase twist sharp-

ens the features, allowing us to extract the relevant information about triexciton-

biexciton emission more easily. Two-quantum correlation scans using co-circular po-

larization could give additional insights into the unbound-but-correlated exciton-pair

dynamics.

5.5 Hints of even higher-order correlations

In this chapter we used third-order and fifth-order signals to measure many properties

of biexcitons including binding energies and dephasing times. The cross-linear fifth-

order measurements showed that triexciton-biexciton emission had to be included in

order to make the simulations match the experiment. We also observed and isolated

features due to unbound-but-correlated exciton pairs. These peaks can be modeled

using an EIS term in the phenomenological equations. The two-quantum rephasing

spectra showed that the biexciton feature has little inhomogeneity, but the shape and
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Figure 5-9: Fifth-order two-quantum rephasing (R), nonrephasing (NR), and correlation (C)
spectra for cross-linear polarization. Feynman diagrams contributing to the (a) rephasing
and (b) nonrephasing signals. (c) The two pulse timing sequences. The LO is indicated
but not labeled. (d) The triexciton-biexciton emission pathway is included, and the binding
energy difference leads to a red-shift of 0.7 meV. The slight shifts present in the R and NR
spectra result in an asymmetry in the correlation spectrum. (e) The triexciton-biexciton
emission pathway is not included, and the correlation spectrum is symmetric.
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location of the HH∗ feature depends on pulse fluence. This indicated the presence of

still higher-order correlations, and this led to the conclusion that although we were

measuring a signal in a phase-matched direction that is most easily described using

five field interactions, there must be higher-order signals present in that direction. In

the future, a three-dimensional seventh-order measurement could be used to corre-

late two-quantum coherences, |0〉〈2|, to other two-quantum coherences, |2〉〈0|, before

signal is radiated, a fully two-quantum rephasing technique.
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Chapter 6

Six-particle correlations

In the previous two chapters, we observed correlations of up to four particles directly.

However, we also observed subtle features that could only be replicated if additional

levels were included. Correlations involving more than four particles have been pre-

dicted theoretically [286] and have been observed indirectly through their influence on

various one-dimensional time-resolved signals [287–292]. In this chapter we measure

coherent six-particle correlations directly. At fifth order, we use a three-quantum non-

rephasing pulse sequence to observe features due to four types of triexcitons. And, at

seventh order, we measure three-quantum rephasing signals whose spectra have fea-

tures due to two of the triexctions, but the signal is dominated by exciton–free-carrier

scattering.

Three-quantum, fifth-order signals were measured in the two-beam ‘self-diffraction’

geometry shown in Fig. 6-1(e) and (f). Signal is measured in the phase-matched di-

rection, k
(5)
sig = 3kb − 2ka with co-linear polarization. The kb beam is delayed, and

its field interactions create three-quantum coherences that are then projected onto

one-quantum coherences by the two conjugate field interactions. In this manner,

three-quantum oscillations are Fourier transformed and their phases are correlated to

the radiative one-quantum coherences. Feynman diagrams representing typical signal

contributions and the measured spectrum are presented in Fig. 6-1(a). The spectrum

shows four main features that appear at coordinates which indicate they are bound

correlations of three excitons. The HHH triexciton coherence is the most intense

feature near 4618.2 ± 0.2 meV. We use its peak location just below the diagonal to

measure its binding energy, ΔHHH , to be 1.7± 0.2 meV. The other three features are

due to HHL (4625.6 ± 0.2 meV, ΔHHL = 1.8 ± 0.2 meV), HLL (4632.5 ± 0.3 meV,

ΔHLL = 2.4±0.3 meV), and LLL (4640.0±0.3 meV, ΔLLL = 2.4±0.4 meV) triexci-

ton coherences. The three-quantum linewidths give dephasing times of about 1.3±0.3

ps. Unlike the two-quantum coherence measurements that showed strong signals from
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Figure 6-1: Three-quantum spectra of triexciton coherences. (a) Fifth-order signal mea-
sured in the 3kb − 2ka direction using co-linear polarization showing four main feature due
to triexciton–ground-state coherences. (b) Fifth-order co-circular polarization spectrum has
significant exciton–free-carrier scattering, but both HHL and HLL triexciton features are
visible. (c) Seventh-order rephasing spectrum measured in the 4kb − 3ka direction using
co-linear polarization is dominated by exciton–free-carrier scattering but HHH and per-
haps HHL features are visible. (d) Seventh-order co-circular polarization spectrum shows
only exciton–free-carrier scattering. In any of the four measurements, there are no fea-
tures indicating signals due to unbound-but-correlated three-exciton complexes, HHH∗.
(e) Three-beam (ka, kb, and kLO) geometry used in the fifth-order and seventh-order mea-
surements. (f) Confocal view of the beams in the three-beam geometries. (g) Confocal view
of the beams in the six-beam geometry.
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both bound (biexciton) and unbound-but-correlated two-exciton correlations, in this

case there are no measurable signals from unbound three-exciton correlations even

though the strongest triexciton signal/noise ratios are on the order of 103. This result

suggests that there are no significant unbound six-particle correlations in this system

under the present conditions.

We used the six-beam geometry1 shown in Fig. 6-1(g) to validate our fifth-order

signals in three ways. First, we verified that the generated fifth-order signal depends

on all five input beams; blocking any one beam caused the signal to disappear. Second,

we confirmed that the fifth-order spectra were identical to those collected in the

3kb − 2ka geometry. Third, by placing wave plates in the beams to control the

polarizations of the fields independently, we verified that bound HHH triexcitons

were created by any combination of polarizations except co-circular, which could

not create identical exciton constituents with different spins. In this geometry, it is

possible to generate 3D and 4D spectra correlating multiple events in multiple time

periods, which could lead to new insights.

We performed the same experiment under co-circular polarization; the spectrum is

presented in Fig. 6-1(b). This spectrum shows the two peaks due to mixed triexciton–

ground-state coherences that are expected from the dipole selection rules. The large

stripes beneath the two peaks are due to exciton–free-carrier scattering, which is not

suppressed in this polarization configuration. As in the co-linear configuration, no

unbound-but-correlated three-quantum features are visible along the diagonal.

We then performed a co-linear polarized k
(7)
sig = 4kb − 3ka seventh-order rephas-

ing measurement in which the three-quantum coherences produced by the first three

(−ka) field interactions are projected by the four variably delayed (kb) field inter-

actions onto radiative one-quantum coherences as shown by the Feynman diagrams;

rephasing now occurs at one-third the three-quantum dephasing rate. The spectrum

shown in Fig. 6-1(c) used a co-linear polarization configuration. Exciton–free-carrier

scattering dominates the spectrum at three-quantum energies above 4630 meV. Never-

theless, rephased triexciton coherences are visible, most notably the HHH triexciton

at 4618 meV, and perhaps the HHL at 4626 meV. We performed the same scan with

co-circular polarization (which excludes HHH triexcitons since all of the exciton

constituents would have parallel spins) as another attempt to observe any six-particle

unbound-but-correlated features. These features do not appear along the diagonal

in Fig. 6-1(d), however, and only exciton–free-carrier scattering features are visible.

1Generating this geometry to produce signal in the k(5)
sig = ka − kb − kc + kd + ke direction with

the spatial beam shaper in the COLBERT spectrometer is straightforward; had we not used this
apparatus, a new static diffractive optic would have been needed.
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Figure 6-2: Fifth-order three-quantum nonrephasing spectrum. The amplitude of the spec-
trum (left) is identical to Fig. 6-1(a) except it is presented with equal energy increments
for both axes. Triexciton coherences decay rapidly, within about 1 ps. The real (middle)
and imaginary (right) portions of the spectrum are also presented. The lineshapes of the
peaks indicate that unbound-but-correlated three-exciton coherences are not present.

This result further indicates an absence of unbound six-particle correlations.

The spectra displayed in Fig. 6-1 were stretched horizontally to make the features

easier to view. To indicate the true consequences of the rapid dephasing times of these

signals, the fifth-order three-quantum spectrum for co-linear polarization is presented

again in Fig. 6-2, but with equal energy increments along both axes. The features

are elongated vertically, and the rapid dephasing is manifest in this elongation. We

also present the real and imaginary parts of the spectrum. The clean character of the

peaks indicates that they are not influenced by unbound six-particle correlations as

the biexciton coherences were influenced by the HH∗ correlation in the SIII scan at

third-order under the same polarization conditions.

These measurements suggest our multi-exciton level scheme can be described by

the transition hierarchy depicted in Fig. 6-3. Fields can couple the common ground

state to four exciton states. The single exciton states can couple to two-exciton states,

both bound and unbound, which in turn can couple to triexciton states. Patterns

emerge in the coupling scheme. The ground and exciton states have four transi-

tions, biexcitons states have six transitions, unbound-but-correlated levels have three

transitions, and triexciton states have two transitions.

Although the numerical solutions would require extensive computation time, the

three-quantum results—especially the spectrum shown in Fig. 6-2—should be simu-

lated by expanding the nonlinear exciton equations to fifth-order. A partial deriva-
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Figure 6-3: All of the exciton, biexciton, unbound-but-correlated two-exciton, and triexciton
energy levels and their transitions. This is a more detailed depiction than was presented in
Fig. 2-9.

tion of the full equations is presented in Sec. 8.2.5 of Ref. [198]. Unfortunately, that

derivation excluded the important six-particle correlations. Following Sec. 2.4 of this

thesis, the missing six-particle correlation term could be written as

T h′e′h′′e′′he
lknmij ≡ 〈dh′

l ce′
k dh′′

n ce′′
m dh

i c
e
j〉. (6.1)

The abbreviated forms of the fifth-order nonlinear exciton equations—including six-

particle correlations—are given in Ref. [293]. In our notation, the sets of equations

are given by

−ih̄
d

dt
p = −h̄ωxp + μ∗E(1 − p∗p + p∗p∗pp + B∗pp + p∗p∗B + B∗B)

+V (p∗B + p∗p∗pB + B∗pB + p∗p∗T + B∗T ), (6.2)

−ih̄
d

dt
B = −h̄ω2xB + V pp + μ∗Ep∗B + μ∗EV p∗T, (6.3)

and

−ih̄
d

dt
T = h̄ω3xT + V ppp. (6.4)

These equations include all phase-space filling and full Coulomb interaction terms.

Much could be learned about the existence of bound six-particle correlations and the

absence of unbound-but-correlated six-particle correlations if these equations were

used to compute the three-quantum 2D FTOPT fifth-order spectra presented in this

chapter.
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Chapter 7

Eight-particle correlations

Based on the observation of exciton, biexcition, and triexciton coherences, it is tempt-

ing to surmise that the ladder of multiexciton states should continue. Therefore, we

performed a nonrephasing seventh-order experiment to measure eight-particle co-

herences due to either bound quadexcitons or unbound-but-correlated four-exciton

coherences. The pulse spectra covered both the H and L exciton resonances. As

can be seen in Fig. 7-1, however, no peak is observed below or along the diagonal in

this k
(7)
sig = 4kb − 3ka measurement. The two pulses had co-linear polarization and

the fluence was about 104 nJ/cm2. Fluences this high result in absorption satura-

tion, see Fig. 4-1. Exciton–free-carrier scattering completely dominates the signal,

indicating that at these carrier densities, correlations of more than six particles are

not significant. The exciton–free-carrier scattering signal can be due to either one

excited electron that has a large nonzero momentum—k >> 0—or it could be due

to several correlated excited carriers, all with smaller nonzero momenta—k > 0. The

reduction of correlation as the number of electron-hole pairs increases, accentuated
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Figure 7-1: A four-quantum seventh-order co-linear polarization measurement indicates the
absence of eight-particle correlations. If HHHH quadexciton coherences were produced as
indicated by the pathway shown, then a peak would appear below the diagonal line drawn
along E4Q = 4Eemit. The large vertical features are due to exciton–free-carrier scattering.
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in the absence of a binding energy, results from the fluctuating forces exerted by all

the nearby electrons and holes. The measured binding energies of 1.7–2.4 meV are

sufficient to sustain triexciton correlations against some fluctuations at the sample

temperature.

Additional measurements could be used to determine if the absence of eight-

particle correlations in the above measurement is because the measurement was not

sensitive enough to detect the correlations, or because the correlations do not exist.

Separating one or more of the four initial field interactions into a distinct beam so

that at least one of the fields could be time separated from the others before the

four-quantum coherence time will allow the initial excited carrier(s) to decay, and

thus the background signal would have less exciton–free-carrier scattering. Another

future experiment is to use a cross-linear polarization scheme to eliminate much of the

exciton–free-carrier scattering1. These two measurements would be more sensitive to

eight-particle correlations and could reveal their signatures hidden in the above 2D

spectrum.

Regardless, a pattern is beginning to emerge. We have now measured several

spectra at fluences above 103 nJ/cm2. In each measurement, unexpected effects were

observed as the fluence exceeded this value. The linear spectra described in Sec. 4.1

showed absorption saturation. The two-quantum rephasing fifth-order measurements

with co-circular polarization presented in Sec. 5.2 indicated that the EIS and EID ef-

fects cause energy and broadening shifts, respectively, of the unbound-but-correlated

feature, with a clear transition in this fluence range. In this chapter, we observed

that significant exciton-exciton correlations other than exciton–free-carrier scattering

were not observable in four-quantum measurements. These effects likely originate in

the fact that at these fluence levels, the carrier density suggests that the excitons es-

sentially fill the volume of the sample. Undoubtably, the strong Coulomb interactions

between charged particles in GaAs quantum wells lead to interesting effects as the

carrier density increases.

1A preliminary measurement showed no signal for this polarization configuration.
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Chapter 8

Conclusions

We will first understand how simple the universe is when we recognize how

strange it is.

It is my opinion that everything must be based on a simple idea. And it

is my opinion that this idea, once we have finally discovered it, will be so

compelling, so beautiful, that we will say to one another, yes, how could it

have been any different.

— Quotable American physicist John Archibald Wheeler (1911–2008), doctoral ad-

visor to Richard Feynman and colleague of Albert Einstein [294].

8.1 Summary

These quotes—and the one in the introductory chapter—suggest that science and

science fiction agree: the universe should be explainable in simple terms. This is

understandable because both the physics of the very small and the very large can be

described by rather simple equations [295]. Nevertheless, it is particle interactions

that cause the complexities of life, whether those particles are electrons, proteins, fish,

birds, humans, or planets. This raises many philosophical issues, some of which—

decoherence and entanglement—are topics at the heart of quantum mechanics [296–

299].

Are the quotes correct, at least for GaAs? That is, is there a complete yet simple

equation that describes the ‘universe’ of many-body interactions in the quantum well?

We should consider whether any of the three models listed in Chapter 2 satisfies these

two characteristics. The sum-over-states model used the excitons as an organizing

principle to describe the energies of the correlations, their transition dipoles, and
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Figure 8-1: Graphical representation of the system Hamiltonian in the sum-over-states
model. The upper left corner is the ground state. The green, yellow, and red squares
represent the single exciton levels, the two-exciton levels, and the three-exciton levels, re-
spectively. The light blue and dark blue squares represent perturbatively small right-circular
and left-circular polarized transitions; the excitons and multiexciton states listed on the left
are a diagonal basis for the system. The dark grey squares are multiple-photon transitions
that were not explored in our experiments.

their decoherence times and lifetimes. In a sense, the rich spectra are distilled into

just a few key pieces of information. We present the energy levels and the nonzero

transitions dipoles in a graphical form of the Hamiltonian matrix in Fig. 8-1. This is

an illustration of a more advanced form of the example matricies shown in Eqn. 2.29.

The colored diagonal elements represent the energy levels of the correlations listed to

the left, which indicate the ground |0〉, single-exciton (one arrow), two-exciton (two

arrows), and three-exciton (three arrow) states. Red arrows represent H excitons

and their spin, while blue arrows represent L excitons and their spin. The blue, off-

diagonal squares in the matrix represent the allowed transitions of the system, and

the grey areas are multiple-photon transitions that we did not investigate. More-

over, our results from Chapter 7 suggest that the Hamiltonian matrix is no larger.

This satisifies the simplicity requirement. Unfortunately the sum-over-states model

is a poor way to understand the complex many-body interactions in this system be-

cause the correlations cannot be predicted. Instead they are included in a haphazard

manner after they are observed. The Bloch equations suffer from the same problem;

although the many-body correlations can be inserted phenomenologically, correla-

tions are included only after they have been observed. Thus, although these two

models are simple, they are not complete because they cannot predict the observed
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correlations. On the other hand, the nonlinear exciton equations model also fails to

satisfy both characteristics. Although thus far they have predicted the two-particle

and four-particle interactions manifest in the measured spectra, they are anything

but simple. The lack of simplicity has prevented theoretical investigations of direct

coherent six-particle correlations.

The experiments contained in this thesis illustrate the difficulty of this philosoph-

ical question. As described, we studied the fundamental physical problem of many-

body interactions using the technologically important material GaAs [300]. Such stud-

ies began in the 1980s; recent advances using two-dimensional optical spectroscopy

suggested that complete elaboration of the many-body interactions was both possible

and necessary. The experimental apparatus we designed and built—the COLBERT

spectrometer—performed these measurements with ease, even though the measure-

ment conditions were performed under varying geometries, pulse timing schemes,

and polarization conditions. The measured spectra revealed several many-body in-

teractions that give scientists a better understanding of ‘many’. We observed that

correlations involving two particles, four particles, and six particles can contribute

to the signal, but correlations involving more than six particles do not contribute

under the conditions used here. Additionally, the spectra contained detailed infor-

mation, such as energetics and dephasing dynamics, about each correlation. Thus

our work described the properties as well as the limits of many-body correlations in

this system. Although our knowledge of perturbation theory led us to suspect that

eight-particle correlations should exist, their unexpected absence here brings to mind

another Wheeler quote,

No phenomenon is a real phenomenon until it is an observed phenomenon.

8.2 Outlook

The femtosecond pulse shaping methods devised in the Nelson group over the past

decade are now robust enough to be used for many scientific investigations beyond

pulse shaping development. Most of the technical challenges inherent to measuring

2D FTOPT spectra using the COLBERT spectrometer have been overcome, meaning

attention can focus on scientific questions. Since spectroscopic measurements can

reveal insights about electronic excitations and their interactions, important excitonic

and molecular systems can be investigated.

First, more can be learned about the GaAs sample. Several straightforward ex-

periments were mentioned in the text. In addition, tailored pulses can be used to

select desired correlations. One type of tailoring technique is a double-pulse techique
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in which emission pathways can be suppressed or enhanced [301]. A second technique

involves phase-windows [254, 255] to enhance or suppress desired two-exciton coher-

ences. We have performed preliminary measurements using both coherent-control

techniques to attempt to isolate multiexciton coherence even further. Another ul-

timate goal would be to characterize the exciton wavefunction completely through

quantum-state tomography. Our measurements begin that journey. In a similar

manner, these ideas and measurements may be valuable for understanding and im-

plementing nonlinear wave packet interferometry experiments [302], where detection

and knowledge of the correlations among events in all time periods could be useful.

Further knowledge of the many-body interactions could be gained if magnetic [303–

305] or THz [306] fields were introduced to modulate or to enhance the Coulomb

interactions. Multidimensional studies of the exciton and multiexciton fine structure

[38] and exchange interactions [307] would be valuable.

Measurements on other systems are also underway. Two-dimensional measure-

ments on exciton-polaritons in semiconductor microcavities will lead to a better un-

derstanding of parametric scattering processes [308–311]. Similar interactions in-

volving strong coupling between J-aggregates and light in microcavities can be in-

vestigated [312–314] and hopefully incorporated into optical switches. In both the

inorganic and organic systems, the strong coupling between light and matter in mi-

crocavities will make it easier to manipulate and control the excitations. It may also

be possible to measure or control exciton-polariton propagation. Exciton and exciton-

polariton propagation are important topics because excitonic systems can transport

energy without transporting charge; a number of technological applications may ex-

ploit this property. The capabilities of the COLBERT device could also be used to

perform multiple transient grating measurements at varying wave vectors between the

pump beams—all under computer control—to study exciton diffusion in J-aggregates

and other systems.

Two-dimensional correlation spectra and SIII measurements on quantum dots

will extend state-resolved pump-probe measurements [315, 316] to reveal additional

insights into the electronic structure of the biexcitons. In photosynthetic light-

harvesting complexes, fifth-order measurements of the two-exciton–exciton coherence

can expose additional quantum correlations beyond those already measured [165, 168].

Energy transfer mechanisms in coupled quantum-dot/J-aggregate systems can also

be investigated [317, 318]. Theoretical investigations of all of the above systems will

be crucial. As we have seen, however, simulations quickly become nontrivial; new

simulation techniques must be developed.

The topic of quantum entanglement is ripe for investigation, both theoretical and
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experimental. Examples have been demonstrated: decoherence—a topic distinct from

dephasing [319]—has been controlled [320], entanglement measures for photosynthetic

complexes have been suggested [321] and created [322], and entangled images have

been generated through four-wave-mixing measurements [323], yet the impact on

nonlinear spectroscopy has been limited [324, 325]. Although they have only begun

to emerge, the subtle but powerful methods of quantum entanglement are anticipated

to bring about significant advances and profound insights into the field of nonlinear

spectroscopy.

141



142



Appendix A

Analysis of cascade contamination

Each time a new high-order spectroscopy is developed, the issue of cascaded lower-

order contributions needs to be addressed because their presence greatly affected the

development of 2D Raman spectroscopy [186, 326–328]. Cascaded signals can be mis-

interpreted as true high-order signals because they satisfy the same phase-matching

and power-law conditions. The prototypical cascade is the third-order/third-order

cascade—where the field emitted by one third-order process is reabsorbed in a second

third-order process—which can contaminate a fifth-order signal. At higher orders

other sets of cascades are possible [329].

Few experimental tests are available to identify the cascades and to estimate the

degree of contamination. A linear dependence on concentration is the most common

piece of evidence used to confirm the absence of cascades. We have a solid sample

and are unable to change the carrier concentration (in GaAs this is the carrier den-

sity) independently from the input power. A cascade-free fifth-order signal will also

depend linearly on sample path length. We cannot vary the sample path length be-

cause the width of the quantum well determines the exciton energies. Changing the

number of quantum wells would be the correct approach, but this is technologically

impractical, and would provide at most only one order of magnitude variation (one

to ten quantum wells [41]). Furthermore, in nonresonant fifth-order measurements,

phase-sensitive heterodyne detection was used to discriminate against cascades be-

cause they were π
2

phase-shifted from the true signal [330]. In resonant fifth-order

measurements, the phase of the cascades and the true signal are π phase-shifted be-

cause the response functions are imaginary, meaning heterodyne detection cannot be

used to discriminate against the cascades [331]. Any contributions from cascades in a

resonant measurement simply interfere destructively with the true high-order signal,

causing an overall loss of amplitude. Resonant seventh-order measurements suffer

from an analogous lack of phase discrimination; the fifth-order/third-order cascades
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will by π phase-shifted from the true signal, while the third-order/third-order/third-

order cascades will have the same phase as the true signal. These phase shifts result

from additional Maxwell equation events that are not part of a true high-order pro-

cess.

Instead, we rely on two pieces of information. The first is that cascaded con-

tributions have typically dominated only nonresonant measurements in which the

high-order signal involved a formally forbidden transition. All transitions in reso-

nant measurements like those performed here involve formally allowed transitions.

Previous fifth-order 2D IR resonant spectroscopies had at most minimal (<2%) con-

tamination by cascades [111]. Accounting for wavelength (800 nm), path length (10

nm), concentration (1024 m−3), and transition dipole moment differences (the present

transition moments are ∼15 Debye), we estimate the amount of cascade contamina-

tion should be one-tenth that of the IR, giving a contamination degree of <0.2%.

The second piece of evidence is that we can draw the Feynman pathways for

the cascaded contributions and determine the frequency coordinates at which the

cascades should appear. This analysis relies on the fact that in our fifth-order three-

quantum measurements, only the true fifth-order signal can arise from coherences

involving triexcitons. Cascades would appear either on the diagonal or shifted below

it by the biexciton binding energy (∼1 meV), due to polarization interferences in

parallel cascades; the measured peak is shifted even lower (∼1.8 meV). This suggests

that the coherence is due to a true triexciton–ground-state coherence. Furthermore,

the triexciton-biexciton emission observed in fifth order two-quantum rephasing is not

possible in a cascaded signal, indicating that the two-quantum rephasing signal shown

is also not contaminated significantly. This is even clearer from the real part of the

rephasing spectrum, Fig. 5-6(d). Similar arguments hold for the rephased triexcitons

observed at seventh order. Additionally, the seventh-order, three-quantum rephasing,

co-circular signal—were it due to cascades—should have contained a peak arising from

a parallal cascade between a two-quantum unbound-but-correlated coherence and a

single exciton coherence. But since this signal does not appear exactly along the

diagonal, this indicates that the previous observation was also not a cascade. Phase-

cycling procedures will eliminate some cascade contributions, but only those cascades

which do not remain coherent. By subtracting signals that are not strictly dependent

on the phase of all five fields in a deterministic manner, phase cyling eliminates

cascades that involve random scattering events during the intermediate-emission and

reabsorption processes. Thus, although we cannot perform concentration, pathlength

variation, or phase-discrimination tests, the evidence strongly suggests that cascades

do not contaminate our signals substantially.
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Appendix B

Spectrum from the nonlinear

exciton equations

In this appendix, we show how to calculate a one-dimensional spectrum using an

adaptive Runge-Kutta algorithm to integrate the nonlinear exciton equation, Eqn.

2.60, numerically. The algorithm we use is known as RKF45. The computation uses

a three-band model that includes the one conduction and two valence bands of GaAs.

The bulk of the code—everything until line 72—involves constructing the ma-

tricies that describe the site energies, dephasing, Coulomb interactions, and RKF45

implementation. The algorithm itself occurs on lines 73–83, and it incorporates a

subfunction, np1, to propagate the system from an initial time point, t(aa), to a

desired time point, t(aa+1). The while loop repeats until time, t, reaches the final

time, tf, regardless of the number of steps required. Variable aa counts the steps.

The time and the total polarization vectors, t and totp, respectively, are then in-

terpolated to evenly spaced vectors and Fourier transformed to yield frequency and

spectral data sets.

The elements of Eqns. 2.60 and 2.61 are present in the code: dephasing tX , deph;

density matricies ρhe
ij , pH, and pL; sites i and j, Ndim; conduction band T c, tc; H

valence band T H , tH; L valence band T L, tL; Coulomb interactions Vij, coul; electric

field Ea, fld; dipoles μhe
ij , muH and muL, and polarizations P(t), tpHH, tpLH, and their

sum, totp. The tolerance is given by tol. All of the parameters are inserted into

the subfunction np1 at each time point. The algorithm contained in this subfuntion

then computes the new polarization, the new density matrix, and a suggested new

time step, h. The summation in lines 50 and 52 are not allowed in a two-dimensional

simulation, slowing computations.
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1 %% Parameters

2 Ndim = 10; % number of sites
3 h = 0.10; % initial time step (ps)

4 tol = 1e−2; % error tolerance

5 deph = 6; % exciton dephasing (ps)
6 hbar = 0.241798977*2*pi; % convert meV to angular THz

7

8 %% Free−band matrices

9 blnk = diag(ones(1,Ndim−1),1) + diag(ones(1,Ndim−1),−1);
10 blnk(Ndim,1) = 1; blnk(1,Ndim) = 1;

11 tc = blnk.*8*hbar; tH = blnk.*4.75*hbar; tL = blnk.*2.52*hbar;
12 tc = tc'; tH = tH'; tL = tL';

13 clear blnk;
14

15 %% Coulomb matrix

16 % constants for coupling matrix
17 U0 = 10*hbar;

18 a0 d = 0.5;
19 v = zeros(1,Ndim);

20 for ii=1:Ndim
21 v(ii) = U0/((ii−1)+a0 d);

22 end
23

24 coul = zeros(Ndim,Ndim);

25 for ii = 1:Ndim
26 for jj = 1:Ndim

27 if abs(ii−jj)<round(Ndim/2)
28 coul(ii,jj) = v(1+abs(ii−jj));
29 else
30 % account for periodic boundary conditions

31 coul(ii,jj) = v(1+Ndim−abs(ii−jj));
32 end

33 end

34 end
35 clear ii jj v U0 a0 d;

36

37 %% Dipole matrix

38 muH = eye(Ndim); % heavy−hole
39 muL = 0.75.*muH; % light−hole
40

41 %% Time

42 tf = 50; % propagate polarizations until (ps)
43 t1 = 0.7; % pulse delay (ps)

44 dt = 0.3; % pulse width (ps)
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46 %% Prepare empty matricies

47 pH = zeros(Ndim,Ndim); pL = pH;
48 coul = 1i*coul; tc = −1i*tc;
49 tH = −1i*tH; tL = −1i*tL;
50 tmatH = tc + tH; tmatL = tc + tL;

51 % pre−add these outside the 'for' loop
52 deph = −1/deph; dcm = deph + coul;

53

54 %% Create Runge−Kutta−Fehlberg matricies
55 % time changes for each of six steps

56 rkt = [0,1/4,3/8,12/13,1,1/2];
57 % multipliers

58 rkv(1,:) = [0,0,0,0,0];
59 rkv(2,:) = [1/4,0,0,0,0];

60 rkv(3,:) = [3/32,9/32,0,0,0];
61 rkv(4,:) = [1932/2197,−7200/2197,7296/2197,0,0];
62 rkv(5,:) = [439/216,−8,3680/513,−845/4104,0];
63 rkv(6,:) = [−8/27,2,−3544/2565,1859/4104,−11/40];
64 % final multiplicative factors of sums

65 rkm(1,:) = [25/216,0,1408/2565,2197/4104,−1/5,0];
66 rkm(2,:) = [16/135,0,6656/12825,28561/56430,−9/50,2/55];
67

68 %% Numerical integration

69 aa = 1; % time points counter
70 t(1) = 0; % time starts at t=0 (ps)

71 tpHH = zeros(1,10000); tpLH = zeros(1,10000);

72

73 while t(aa) < tf

74 % first propose a new time step: 'h'
75 t(aa+1) = t(aa) + h;

76 [pH,spH,hH] = np1(pH,h,t(aa),tol,tmatH,dcm,rkt,rkv,rkm,t1,dt,muH);
77 [pL,spL,hL] = np1(pL,h,t(aa),tol,tmatL,dcm,rkt,rkv,rkm,t1,dt,muL);

78 h = min(hH,hL);
79 % find the total polarization at this time point

80 tpHH(aa) = spH; tpLH(aa) = spL;
81 % increment to the next point

82 aa = aa + 1;

83 end
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The subfunction np1 implements the RKF45 algorithm by calculating the fourth-

order and fifth-order slopes, pa and pb; the difference between the slopes is the nu-

merical error, er. This is the advantage of the RKF45 algorithm.

Several elements in this subfunction are worth noting. For example, line 51 is the

trace operation given by Eqn. 2.19; the density matricies at different orders—pa and

pb—are projected by the dipole matrix, mu, and the traces are taken using the sum

functions. Lines 53-62 compare the error to the tolerance. If the error is less than the

tolerance, the step is accepted and line 56 calculates the time increment, hn, to be

used in the next iteration. If the step is rejected, the time step is reduced by half in

line 61 and the loop executes again. In this subfunction, the variable aa is the stop

mechanism. If the step is within the error tolerance and is accepted, aa changes from

a zero to a one on line 59, and the while loop stops. This subfunction uses a second

subfunction, fld for the electric field. The mathematics of Eqn. 2.60 occur on lines

29–47. In the two-dimensional simulation, the matrix mathematics performed on line

39 must be done element-by-element, slowing computations dramatically.

1 function [npt,sp1,hn] = np1(p,h,t,tol,tmat,dcm,rkt,rkv,rkm,t1,delt,mu)
2

3 % INPUTS
4 % p: initial p i j(t n)

5 % h: desired time step

6 % t: time of previous pij (tn)
7 % tol: desired error tolerance

8 % tmat: Tc and Tv matricies
9 % dcm: dephasing and coulomb matricies

10 % rkt: RKF45 time elements
11 % rkv: RKF45 vector elements

12 % rkm: RKF45 multiplicate elements
13 % t1: pulse delay (ps)

14 % delt: width of pulse
15 % mu: dipole matrix

16 %

17 % OUTPUTS
18 % npt: new p i j(t n+1)

19 % sp1: new p(t n+1) (*mu & sum( i j) )
20 % hn: next guess for 'h'

21 %
22 Ndim = length(p);

23 aa = 0;
24 while lt(aa,1)

25 % erase the RKF45 storage matrix after a complete step
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26 p2t = zeros(Ndim,Ndim,6);
27 % clear the sub−sums at each time point

28 p2 1 = zeros(Ndim,Ndim); p2 2 = p2 1;
29 for rk = 1:6

30 % 'rk' counts the Runge−Kutta steps
31 % find k1−k6
32 sba = zeros(Ndim,Ndim);
33 for cc = 1:(rk−1)
34 % 'cc' counts the sub−sum of the RK method

35 sba = sba + rkv(rk,cc)*p2t(:,:,cc);
36 end

37 sb = p + h*sba;
38 % the T & V matricies

39 m1 = dcm.*sb + tmat*sb;
40 % the source term: the electric field

41 m2 = fld(t+rkt(rk)*h,t1,delt).*mu;
42 p2t(:,:,rk) = m1 + m2;

43 % the sub−sum for the 4th−order sum

44 p2 1 = p2 1 + rkm(1,rk)*(m1 + m2);
45 % the sub−sum for the 5th−order sum

46 p2 2 = p2 2 + rkm(2,rk)*(m1 + m2);
47 end

48 % the 4th−order & 5th−order sums
49 pa = p + h*p2 1; pb = p + h*p2 2;

50 % calculate the 4th−order & 5th−order polarizations
51 sp1 = sum(sum(mu.*pa)); sp2 = sum(sum(mu.*pb));

52 er = abs(sp2−sp1);
53 if le(er,tol)
54 % if the calculated error is less than the tolerance

55 % the new 'h'
56 hn = h*(tol*h/(2*er))ˆ(1/4);

57 % save and increment
58 npt = pa;

59 aa = 1;
60 else

61 h = h/2;
62 end

63 end
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The subfunction below, fld, is used in line 41 of np1. This function defines the

electric field that drives the system polarization. The value of the function at time

tp is calculated using a Gaussian function whose standard deviation is given by delt

(300 fs), whose envelope delay is given by t1 (700 fs), and whose carrier frequency is

set to the induced heavy-hole oscillation frequency, −35.165 meV.

1 function fldpt = fld(tp,t1,delt)

2

3 %% carrier freq (meV to angular THz)

4 % freq = −35.165*(2*pi*0.241798977);
5

6 %% field envelope for a delay 't1' and width 'delt'

7 env = exp(−(tp−t1).ˆ2/(delt)ˆ2);
8

9 %% include carrier freq, calculate field at time 'tp'
10 fldpt = 1i*env.*exp(1i*53.42505*tp);

The results are shown in Fig. B-1. Part (a) reports the progress of the adaptive

algorithm. The initial time increment of 100 fs is diminished in about four steps until

a fairly steady time increment of about 5 fs is reached. Then the time increment

begins to increase slowly to about 20 fs because the amplitude of the oscillations

decreases as time evolves. About 3300 time steps were required to reach the end

time of 50 ps; the average time step was about 15 fs. The electric field that drives

the sample polarization is illustrated in part (b), and the first 10 ps of the resulting

signal are shown in part (c). Polarization interference between the H and L excitons

is visible as beats in the signal. Finally, the field and the polarization are Fourier

transformed and their amplitudes are displayed in part (d). The field is resonant with

the H exciton frequency. The L exciton has a reduced oscillator strength because it

has a smaller dipole moment value and because it is not resonant with the brightest

part of the driving field. The energy axis has been shifted so that the H exciton

energy has a value of zero.

If hundreds of sites are used and if the carrier frequency of the incident field is

tuned above the L exciton, a higher-energy continuum will appear in addition to the

two exciton absorption features. This continuum is due to absorption by free carriers.

The computation time scales as Ndim2, so it increases to about one hour on a modern

PC.

Two-dimensional computations are significantly more challenging than the one-

dimensional computation performed here. The mathematics become more compli-

cated because the equations are larger, the computations cannot be reduced to matrix
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Figure B-1: Nonlinear exciton equation numerical integration. (a) The adaptive algorithm
takes steps as large as possible within the defined tolerance. (b) The electric field that
drives the sample polarization. (c) The sample polarization induced by the electric field.
(d) Fourier transform of the sample polarization (red) and of the resonant driving field
(blue). There are two peaks due to H and L excitons.

multiplication and instead must be performed element-by-element, and more fields

and polarizations must be tracked. In addition, the lengthy computation times com-

plicate debugging tasks, especially for scientists without formal training in computer

programming.
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[50] L. Schultheis, A. Honold, J. Kuhl, K. Köhler, and C. W. Tu, Phys. Rev. B, 34, 9027 (1986).
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[272] H. Mayer, U. Rössler, and M. Ruff, Phys. Rev. B, 47, 12929 (1993).

[273] K. W. Stone, Coherent multi-exciton dynamics in semiconductor nanostructures via two-
dimensional Fourier Transform optical spectroscopy, PhD thesis, Massachusetts Institute of
Technology, 2009.

[274] K. A. Nelson and M. D. Fayer, J. Chem. Phys., 72, 5202 (1980).

[275] K. A. Nelson, R. Caselegno, R. J. D. Miller, and M. D. Fayer, J. Chem. Phys., 77, 1144
(1982).

[276] M. D. Fayer, Ann. Rev. Phys. Chem., 33, 63 (1982).

[277] V. M. Huxter and G. D. Scholes, J. Chem. Phys., 125, 144716 (2006).

[278] J. M. Anna, M. J. Nee, C. R. Baiz, R. McCanne, and K. J. Kubarych, J. Opt. Soc. Am. B,
27 (2010).

[279] K. Nagayama, P. Bachmann, K. Wuetrich, and R. R. Ernst, J. Mag. Res., 31, 133 (1978).

[280] L. P. Deflores, R. A. Nicodemus, and A. Tokmakoff, Opt. Lett., 32, 2966 (2007).

[281] A. Miller, M. Ebrahimzadeh, and D. M. Finlayson, editors, Semiconductor quantum op-
toelectronics: from quantum physics to smart devices : Proceedings of the Fiftieth Scottish
Universities Summer School in Physics, St. Andrews, June 1998, Bristol and Philadelphia,
1999, Taylor and Francis US.

[282] J. T. Fourkas, R. Trebino, and M. D. Fayer, J. Chem. Phys., 97, 69 (1992).

[283] K. B. Ferrio and D. G. Steel, Phys. Rev. Lett., 80, 786 (1998).

[284] E. C. Fulmer, P. Mukherjee, A. T. Krummel, and M. T. Zanni, J. Chem. Phys., 120, 8067
(2004).

[285] L. Yang and S. Mukamel, Phys. Rev. Lett., 100, 057402 (2008).
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