Using the BayStack 350 10/100 Autosense Switch

Part No. 893-00992-B June 1997

4401 Great America Parkway Santa Clara, CA 95054

8 Federal Street

Billerica, MA 01821
© 1997 by Bay Networks, Inc. All rights reserved.

Trademarks

Bay Networks and Optivity are registered trademarks of Bay Networks, Inc.
Bay Networks Press, Centillion, NetICs, BayStack, and EZ LAN are trademarks of Bay Networks, Inc.
Other brand and product names are registered trademarks or trademarks of their respective holders.

Statement of Conditions

In the interest of improving internal design, operational function, and/or reliability, Bay Networks, Inc. reserves the right to make changes to the products described in this document without notice.
Bay Networks, Inc. does not assume any liability that may occur due to the use or application of the product(s) or circuit layout(s) described herein.

Federal Communications Commission (FCC) Statement

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy. If it is not installed and used in accordance with the instruction manual, it may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case users will be required to take whatever measures may be necessary to correct the interference at their own expense.

EN 55022 Declaration of Conformance

This is to certify that the Bay Networks BayStack 350 10/100 Autosense Switch is shielded against the generation of radio interference in accordance with the application of Council Directive 89/336/EEC, Article 4 a . Conformity is declared by the application of EN 55022 Class A (CISPR 22).

Caution: This device is a Class A product. In a domestic environment, this device can cause radio interference, in which case, the user may be required to take appropriate measures.

Voluntary Control Council for Interference（VCCI）Statement

This equipment is in the first category（information equipment to be used in commercial and／or industrial areas）and conforms to the standards set by the Voluntary Control Council for Interference by Data Processing Equipment and Electronic Office Machines that are aimed at preventing radio interference in commercial and／or industrial areas．
Consequently，when this equipment is used in a residential area or in an adjacent area thereto，it can cause radio interference to equipment such as radios and TV receivers．

この装置は，第一種情報装置（商工業地域において使用きれるべき情報装置）で，商工業地域での電波障害防止を目的とした情報処理装置等電波障害自主規制協議会（VCCI）基準に適合 しております。
従って，住宅地域，その膦接地域等で使用した場合，ラジオ，テレビ受信譏等に障害を与え ることがあります。

Contents

Preface
Audience XV
Organization XV
Conventions xvi
Special Message Formats xvi
Use of Enter, Type, and Press xvi
Other Conventions xvii
Ordering Bay Networks Publications xvii
Bay Networks Customer Service xviii
How to Get Help xviii
For More Information xix
Safety Messages
Safety Alert Message Format xxi
Safety Alert Messages Used in This Guide xxiii
Chapter 1
Getting Started
Overview 1-1
Hardware 1-1
BayStack 350 Switch Components 1-2
Cooling Fans 1-4
Features 1-4
Flash Memory Storage 1-6
BootP Automatic IP Configuration 1-6
SNMP MIB Support 1-7
Configuration and Switch Management 1-7
Network Configuration 1-7
Connecting Power Workgroups 1-8
Desktop/Segment Switch 1-9
Creating VLAN Workgroups 1-10
Quick Start 1-11
Quick Start to Installing the BayStack 350 Switch 1-12
Quick Start to Managing the BayStack 350 Switch 1-13
Service Port Interface 1-13
SNMP Management Applications 1-14
Chapter 2
Installation
Overview 2-1
Required Tools and Materials 2-1
Package Contents 2-2
Site Preparation 2-3
Hardware 2-3
Software 2-4
Environment 2-4
Installing the BayStack 350 Switch 2-5
Surface Mounting 2-5
Attaching the Mounting Bracket 2-6
Installing on a Tabletop or Shelf 2-7
Wall Mounting 2-8
Before You Begin 2-8
Wall Mounting the Switch 2-9
Rack Mounting 2-10
Connecting Port Cables 2-12
RJ-45 Port Cables 2-12
100BASE-FX Port Cables 2-13
Connecting Power 2-14
Verifying the Installation 2-15
Chapter 3
Using the Console Interface
Overview 3-1
Console Interface 3-1
Service Port Cabling 3-2
Console Terminal Requirements 3-2
Modem Requirements 3-2
Connecting to the BayStack 350 Switch Service Port 3-3
Accessing the Cl Menus and Screens 3-3
Using the Cl Menus and Screens 3-4
Navigating the CI Menus and Screens 3-4
Screen Fields and Descriptions 3-5
Main Menu 3-6
IP Configuration 3-9
Choosing a BootP Request Mode 3-11
BootP When Needed 3-11
BootP Always 3-12
BootP Disabled 3-12
BootP or Last Address 3-13
SNMP Configuration 3-14
System Characteristics 3-16
Switch Configuration 3-18
MAC Address Table 3-20
VLAN Configuration 3-22
Sample VLAN Configuration 3-24
Port Configuration 3-28
Rate Limiting Configuration 3-30
Port Statistics 3-32
Clear Port Statistics 3-36
Service Port Configuration 3-37
Spanning Tree Configuration 3-39
Spanning Tree Port Configuration 3-40
Display Spanning Tree Switch Settings 3-42
TELNET Configuration 3-45
Software Download 3-48
LED Indications During the Download Process 3-49
Display Event Log 3-51
Excessive Bad Entries 3-52
Write Threshold 3-52
Reset 3-53
Reset to Default Settings 3-54
Logout 3-55
Chapter 4
Troubleshooting
Overview 4-1
LED Indications 4-2
Diagnosing and Correcting the Problem 4-4
Normal Power-up Sequence 4-4
Port Connection Problems 4-5
Port Interface 4-5
Autonegotiation Modes 4-5
Appendix A
Technical Specifications
Environmental A-1
Electrical A-1
Physical Dimensions A-1
Performance Specifications A-2
Network Protocol and Standards Compatibility A-2
Data Rate A-2
Interface Options A-2
Safety Agency Certification A-2
Electromagnetic Emissions A-3
Electromagnetic Susceptibility A-3
Declaration of Conformity A-4
Appendix B
Connectors and Pin Assignments
RJ-45 (10BASE-T/100BASE-TX) Port Connectors B-1
MDI and MDI-X Devices B-2
MDI-X to MDI Cable Connections B-3
MDI-X to MDI-X Cable Connections B-4
DB-9 (RS-232-D) Service Port Connector B-5
100BASE-FX Fiber Optic Port Connectors B-6

Appendix C
Switch Default Settings
\section*{Appendix D}
Sample BootP Configuration File
Index

Figures

Figure 1-1. BayStack 350 10/100 Autosense Switch 1-1
Figure 1-2. Front and back panels 1-2
Figure 1-3. BayStack 350 switches for power workgroups 1-8
Figure 1-4. BayStack 350 switch as a desktop/segment switch 1-9
Figure 1-5. Virtual LANs 1-10
Figure 1-6. Installation flowchart 1-12
Figure 2-1. Package contents 2-2
Figure 2-2. Attaching the mounting brackets for a surface mount 2-6
Figure 2-3. Attaching the rubber footpads 2-7
Figure 2-4. Wall mounting the BayStack 350 switch 2-9
Figure 2-5. Attaching the mounting brackets for a rack mount 2-10
Figure 2-6. Installing the BayStack 350 switch in a 19-inch rack 2-11
Figure 2-7. Connecting RJ-45 port cables 2-12
Figure 2-8. Connecting 100BASE-FX port cables 2-13
Figure 2-9. Observing LEDs to verify proper operation 2-15
Figure 3-1. Map of console interface screens 3-5
Figure 3-2. Console interface main menu 3-6
Figure 3-3. IP Configuration screen 3-9
Figure 3-4. SNMP Configuration screen 3-14
Figure 3-5. System Characteristics screen 3-16
Figure 3-6. Switch Configuration Menu 3-18
Figure 3-7. MAC Address Table screen 3-20
Figure 3-8. VLAN Configuration screen 3-22
Figure 3-9. VLAN configuration spanning multiple BayStack 350 switches 3-24
Figure 3-10. VLAN Configuration screen for switch S1 3-25
Figure 3-11. VLAN Configuration screen for switch S2 3-26
Figure 3-12. VLAN Configuration screen for switch S3 3-27
Figure 3-13. Port Configuration screen 3-28
Figure 3-14. Rate Limiting Configuration screen 3-30
Figure 3-15. Port Statistics screen 3-32
Figure 3-16. Clear Port Statistics screen 3-36
Figure 3-17. Service Port Configuration screen 3-37
Figure 3-18. Spanning Tree Configuration Menu 3-39
Figure 3-19. Spanning Tree Port Configuration screen 3-40
Figure 3-20. Spanning Tree Switch Settings screen 3-42
Figure 3-21. TELNET Configuration screen 3-45
Figure 3-22. Software Download screen 3-48
Figure 3-23. Event Log screen 3-51
Figure 3-24. Sample event log entry showing excessive errors 3-52
Figure 3-25. Sample event log event exceeding the write threshold 3-52
Figure 3-26. Self-Test screen after resetting the switch 3-53
Figure 3-27. Self-Test screen after resetting the switch to default settings 3-54
Figure 3-28. Password prompt screen 3-55
Figure 4-1. LED locations 4-2
Figure B-1. RJ-45 (8-pin modular) port connector B-1
Figure B-2. MDI-X to MDI cable connections B-3
Figure B-3. MDI-X to MDI-X cable connections B-4
Figure B-4. DB-9 service port connector B-5
Figure B-5. 100BASE-FX multimode fiber optic port connector B-6

Tables

Table 1-1. Front and back panel components 1-3
Table 2-1. Power-up sequence 2-15
Table 3-1. Console interface main menu commands 3-7
Table 3-2. IP Configuration screen fields 3-10
Table 3-3. SNMP Configuration screen fields 3-15
Table 3-4. System Characteristics screen fields 3-17
Table 3-5. Switch Configuration Menu commands 3-19
Table 3-6. MAC Address Table screen fields 3-21
Table 3-7. Port Configuration screen fields 3-29
Table 3-8. Rate Limiting Configuration screen fields 3-31
Table 3-9. \quad Port Statistics screen fields 3-33
Table 3-10. Clear Port Statistics screen field 3-36
Table 3-11. Service Port Configuration screen fields 3-37
Table 3-12. Spanning Tree Configuration Menu commands 3-39
Table 3-13. Spanning Tree Port Configuration screen fields 3-41
Table 3-14. Spanning Tree Switch Settings parameters 3-43
Table 3-15. TELNET Configuration screen fields 3-46
Table 3-16. Software Download screen fields 3-49
Table 3-17. LED indications during the software download process 3-50
Table 4-1. LED indications 4-3
Table 4-2. Corrective actions 4-4
Table B-1. RJ-45 port connector pin assignments B-2
Table B-2. DB-9 service port connector pin assignments B-5
Table C-1. Factory default settings for the BayStack 350 switch C-1

Preface

Welcome to the BayStack 350 10/100 Autosense Switch, part of the Bay Networks ${ }^{\circledR}$ BayStack ${ }^{\text {TM }}$ line of communications products. There are two versions of the BayStack 350 10/100 Autosense Switch: the Model 350T and the Model 350F. This guide describes the features, uses, and installation procedures for both models. (Unless otherwise specified, the terms "BayStack 350 switch" and "switch" refer to both models of the BayStack 350 10/100 Autosense Switch.)

Audience

This guide is intended for network installers and administrators who are responsible for installing, configuring, or maintaining Ethernet and Fast Ethernet networks.

Organization

This guide has four chapters, four appendixes, and an index:

- Chapter 1 provides an introduction to the BayStack 350 switch. The chapter also includes a "Quick Start" section for quick access to the switch management features.
- Chapter 2 explains how to install and verify the operation of the BayStack 350 switch. The chapter includes instructions for installing the switch on a tabletop or shelf, on a wall, or in a 19 -inch equipment rack.
- Chapter 3 explains how to connect to the BayStack 350 switch service port and how to use the console interface (CI) menus to configure and manage the switch.
- Chapter 4 describes how to isolate and diagnose problems with the BayStack 350 switch, as indicated by the switch LEDs.
- Appendix A lists operational and environmental specifications that apply to the BayStack 350 switch.
- Appendix B describes the BayStack 350 switch connectors (ports) and pin assignments.
- Appendix C lists the factory default settings for the BayStack 350 switch.
- Appendix D provides a sample BootP configuration file.
- The index provides an alphabetical listing of the topics and subtopics in this guide, with cross-references to relevant information.

Conventions

This section describes the conventions used in this guide.

Special Message Formats

This guide uses the following formats to highlight special messages:
\rightarrow Note: A note is used to highlight information of importance or special interest.

Caution: A caution alerts the user to some action or set of conditions that could result in damage to the equipment.

Warning: A warning alerts the user to some action or set of conditions that could result in personal injury.

Use of Enter, Type, and Press

This guide uses "enter," "type," and "press" to describe the following actions:

- When you read "enter," type the text and press the Enter key.
- When you read "type," type the text, but do not press the Enter key.
- When you read "press," press only the alphanumeric or named key.

Other Conventions

This guide uses the following typographical conventions:

italics	Used for book titles. In command descriptions, italic type indicates a variable that you supply.
Monospace type	Represents examples of screen text or screen field entries you might be required to type.
[Enter]	Named keys in text are enclosed in square brackets. The notation [Enter] is used for the Enter key and the Return key.
$[\mathrm{Ctrl}]+\mathrm{C}$	Two or more keys that must be pressed simultaneously are shown in text linked with a plus $(+)$ sign.

Ordering Bay Networks Publications

To purchase additional copies of this document or other Bay Networks publications, order by part number from Bay Networks Press ${ }^{\text {TM }}$ at the following numbers:

Region	Telephone Number	Fax Number
United States and Canada	$1-888-422-9773$	$1-510-498-2609$
International	$1-510-490-4752$	$1-510-498-2609$

You can also call these numbers to request a free Bay Networks Press catalog.

Bay Networks Customer Service

You can purchase a support contract from your Bay Networks distributor or authorized reseller, or directly from Bay Networks Services. For information about, or to purchase a Bay Networks service contract, either call your local Bay Networks field sales office or one of the following numbers:

Region	Telephone Number	Fax Number
United States and Canada	1-800-2LANWAN; then enter Express Routing Code (ERC) 290, when prompted, to purchase or renew a service contract	$1-508-670-8766$
	$1-508-436-8880$ (direct)	$33-4-92-96-69-96$
Europe	$33-4-92-96-69-66$	$61-2-9927-8899$
Asia/Pacific	$61-2-9927-8888$	$561-988-7550$

How to Get Help

If you purchased a service contract for your Bay Networks product from a distributor or authorized reseller, contact the technical support staff for that distributor or reseller for assistance.

If you purchased a Bay Networks service program, call one of the following Bay Networks Technical Solutions Centers:

Technical Solutions Center	Telephone Number	Fax Number
Billerica, MA	1-800-2LANWAN	$508-670-8765$
Santa Clara, CA	$1-800-2 L A N W A N$	$408-495-1188$
Valbonne, France	$33-4-92-96-69-68$	$33-4-92-96-69-98$
Sydney, Australia	$61-2-9927-8800$	$61-2-9927-8811$
Tokyo, Japan	$81-3-5402-0180$	$81-3-5402-0173$

For More Information

For information about Bay Networks and its products, visit the Bay Networks World Wide Web (WWW) site at http://www.baynetworks.com. To learn more about Bay Networks Customer Service, select Customer Service on the opening Web page.

Safety Messages Übersetzter Sicherheitshinweis Traduction des Messages de Sécurité Traducción de los mensajes de seguridad Messaggi relativi alla sicurezza翻訳された安全警告

This section translates the safety alert messages used in this guide．Safety alert messages notify users of unsafe actions or conditions that could lead to personal injury or equipment damage．

Safety Alert Message Format

All safety alert messages are tagged with an international alert symbol．When you see a safety alert in this guide，be sure to read and follow the instructions before continuing with the procedure．

The safety alert messages in this guide appear in the following format：

[^0]

Warning：A warning alerts the user to some action or set of conditions that could result in personal injury．

\square
Caution：A caution alerts the user to some action or set of conditions that could result in damage to the equipment．

Symbol Meaning（English，German，French，Spanish，Italian，Japanese）

Vorsicht：Dieser Sicherheitshinweis macht den Benutzer auf Maßnahmen oder Bedingungen aufmerksam，die die Verletzung von Personen zur Folge haben können．

Achtung：Dieser Sicherheitshinweis macht den Benutzer auf Maßnahmen oder Bedingungen aufmerksam，die eine Beschädigung der Geräte zur Folge haben können．

Avertissement：La mention Avertissement attire l＇attention de l＇utilisateur sur une action ou un ensemble de conditions pouvant causer des blessures corporelles．

Attention：La mention Attention attire l＇attention de l＇utilisateur sur une action ou un ensemble de conditions pouvant endommager l＇équipement visé．

Advertencia：Un mensaje de advertencia avisa al usuario sobre una acción o conjunto de condiciones que pueden causar daños personales．
－Precaución：Un mensaje de precaución avisa al usuario sobre alguna acción o conjunto de condiciones que pueden dañar el equipo．

Avvertenza：L＇avvertenza indica all＇utente la presenza di una o più condizioni che possono causare lesioni fisiche．

Attenzione：Questo messaggio indica all＇utente la presenza di una o più condizioni che possono causare danni alle apparecchiature．

－警告し「警告」は，身体に損傷を与える恐れのある操作や状況

－注意：「注意」は，機器の損害を招く恐れのある操作や状況に

Safety Alert Messages Used in This Guide

The following safety alert messages are used in this guide. Please read and follow these instructions when you encounter them in the text.

Class A Product

Copyright page

Caution: This device is a Class A product. In a domestic environment, this device can cause radio interference, in which case, the user may be required to take appropriate measures.

Achtung: Dieses Gerät ist ein Produkt der Klasse A. Bei Heiminstallationen kann dieses Gerät Störungen des Rundfunkempfangs verursachen, wodurch der Benutzer gegebenenfalls entsprechende Maßnahmen ergreifen muß.

Attention: Appareil électrique de classe A pouvant causer des radio-interférences en utilisation domestique et nécessiter, le cas échéant, l'application de mesures correctives appropriées.

Precaución: Este dispositivo es un producto de la Clase A. En un entorno doméstico, este dispositivo puede producir interferencias de radio, en cuyo caso, puede exigirse al usuario que tome las medidas de corrección apropiadas.

Attenzione: Questo dispositivo è un prodotto di Classe A. Se utilizzato in ambiente domestico, può causare interferenze radio e, in tal caso, l'utente dovrà prendere le opportune precauzioni.

Accumulated Weight (Wall Mount)

Page 2-1
Caution: The screws and wall composition must be able to withstand the weight of the device, plus the additional weight of the attached network cables and power cords.

Achtung: Schrauben und Wand müssen so beschaffen sein, daß sie dem Gewicht des Geräts, zuzüglich des Gewichts der angeschlossenen Netzwerkund Netzstromkabel, standhalten können.

Attention: Les vis de fixation et le mur doivent être capables de supporter le poids du dispositif, ainsi que des câbles réseau et cordons qui y sont rattachés.

Precaución: Los tornillos y la composición de la pared deben ser capaces de sostener el peso del dispositivo más el peso adicional de los cables de red y cables de alimentación conectados.

Attenzione: Le viti e la struttura a muro devono essere in grado di sostenere il peso del dispositivo, oltre a quello dei cavi di rete e di alimentazione collegati.

Accumulated Weight (Shelf or Table Mount)

Page 2-3
Caution: When this device is installed in a stack on a shelf or tabletop, the accumulated weight of the port cables increases with the height of the shelf or tabletop.

Achtung: Wenn dieses Gerät in einem Stapel auf einem Tisch oder einem Regalboden installiert wird, erhöht sich das Gesamtgewicht der Schnittstellenkabel mit der Höhe des Regalbodens oder Tisches.

Attention: Si l'appareil est posé dans un rack ou sur une étagère, notez bien que le poids du câblage réseau augmente avec la hauteur de l'installation.

Precaución: Cuando este dispositivo se instala apilado en un estante o sobre una mesa, el peso acumulado de los cables de los puertos aumenta según la altura del estante o de la mesa.

Attenzione: Quando il dispositivo viene installato in stack su un ripiano o su un tavolo, il peso dei cavi connessi alle porte aumenta in proporzione all'altezza del ripiano o del tavolo.

Hazardous Electrical Current

Page 2-5
Warning: To avoid bodily injury from hazardous electrical current, do not connect the power cord until instructed to do so.

Vorsicht: Um Verletzungsgefahr durch einen elektrischen Stromschlag auszuschließen, schließen Sie das Netzstromkabel erst an, wenn Sie dazu angewiesen werden.

Avertissement: Pour éliminer tout risque d'électrocution, ne jamais brancher le cordon avant le moment indiqué dans le mode d'emploi.

Advertencia: A fin de evitar daños personales debidos a corrientes eléctricas peligrosas, no conecte el cable de alimentación hasta que se le indique.

Avvertenza: Per evitare lesioni fisiche dovute a scariche elettriche pericolose, non collegare il cavo di alimentazione prima del momento indicato nelle istruzioni.

4

Stacking Units in a Rack

Page 2-10
Caution: When mounting this device in a rack, do not stack units directly on top of one another in the rack. Each unit must be secured to the rack with appropriate mounting brackets. Mounting brackets are not designed to support multiple units.

Achtung: Wenn Sie dieses Gerät in einem Gerätegestell installieren, stellen Sie die Geräte nicht direkt aufeinander. Jedes Gerät muß mit entsprechenden Halterungen im Gestell befestigt werden. Die Halterungen sind nicht dafür konzipiert, mehrere Geräte zu tragen.

Attention: Si cet appareil doit être encastré dans un rack, ne jamais empiler directement plusieurs unités les unes sur les autres. Chaque unité doit être correctement fixée avec les membrures appropriées. Les membrures ne sont pas conçues pour supporter le poids d'unités multiples.

Precaución: Al montar este dispositivo apilado con otros dispositivos, no apile las unidades directamente unas sobre otras. Cada unidad se debe fijar a la estructura mediante los soportes de montaje adecuados. Los soportes de montaje no están diseñados para soportar varias unidades.

Attenzione: Se il dispositivo viene installato su una cremagliera, non impilarlo su un altro dispositivo montato sulla cremagliera. Ciascuna unità deve essere fissata alla cremagliera con le apposite staffe di montaggio. Tali staffe non possono essere utilizzate per fissare più unità.

Hazardous Light Source

Page 2－13
Warning：Fiber optic equipment can emit laser or infrared light that can injure your eyes．Never look into an optical fiber or connector port．Always assume that fiber optic cables are connected to a light source．

Vorsicht：Glasfaserkomponenten können Laserlicht bzw．Infrarotlicht abstrahlen，wodurch Ihre Augen geschädigt werden können．Schauen Sie niemals in einen Glasfaser－LWL oder ein Anschlußteil．Gehen Sie stets davon aus，daß das Glasfaserkabel an eine Lichtquelle angeschlossen ist．

Avertissement：L＇équipement à fibre optique peut émettre des rayons laser ou infrarouges qui risquent d＇entraîner des lésions oculaires．Ne jamais regarder dans le port d＇un connecteur ou d＇un câble à fibre optique．Toujours supposer que les câbles à fibre optique sont raccordés à une source lumineuse．

Advertencia：Los equipos de fibra óptica pueden emitir radiaciones de láser o infrarrojas que pueden dañar los ojos．No mire nunca en el interior de una fibra óptica ni de un puerto de conexión．Suponga siempre que los cables de fibra óptica están conectados a una fuente luminosa．

Avvertenza：Le apparecchiature a fibre ottiche emettono raggi laser o infrarossi che possono risultare dannosi per gli occhi．Non guardare mai direttamente le fibre ottiche o le porte di collegamento．Tenere in considerazione il fatto che i cavi a fibre ottiche sono collegati a una sorgente luminosa．

[^1]
Turning Off Power to the Unit

Page 2－14
Warning：Removal of the power cord is the only way to turn off power to this device．The power cord must always be connected in a location that can be accessed quickly and safely in case of an emergency．

Vorsicht：Die Stromzufuhr zu diesem Gerät kann nur durch Ziehen des Netzstromkabels unterbrochen werden．Die Netzsteckdose，an die das Netzstromkabel angeschlossen ist，muß sich stets an einem Ort befinden，der bei einem Notfall schnell und einfach zugänglich ist．

Avertissement：Le débranchement du cordon d＇alimentation constitue le seul moyen de mettre cet appareil hors tension．Le cordon d＇alimentation doit donc toujours être branché dans une prise accessible pour faciliter la mise hors tension en cas d＇urgence．

Advertencia：La única forma de desconectar la alimentación de este dispositivo es desenchufar el cable de alimentación．El cable de alimentación siempre debe estar conectado en una ubicación que permita acceder al cable de forma rápida y segura en caso de emergencia．

Avvertenza：Estrarre il cavo di alimentazione è l＇unico sistema per spegnere il dispositivo．Il cavo di alimentazione deve essere sempre collegato in una posizione che permetta l＇accesso facile e sicuro in caso di emergenza．

Reset to Default Settings Command

Page 3-8
Caution: If you choose the Reset to Default Settings command, all of your configured settings will be replaced with factory default settings when you press [Enter].

Achtung: Bei Auswahl des Befehls zur Rücksetzung auf die
Standardeinstellungen werden alle von Ihnen konfigurierten Einstellungen durch die werkseitigen Standardeinstellungen ersetzt, wenn Sie die Eingabetaste drücken.

Attention: Si vous restaurez la configuration usine, votre configuration courante sera remplacée par la configuration usine dès que vous appuierez sur [Entrée].

Precaución: Si selecciona el comando Restaurar valores predeterminados, todos los valores de configuración se sustituirán por las valores predeterminados en fábrica al pulsar [Intro].

Attenzione: Nel caso in cui si selezioni la reimpostazione dei valori di default, tutte le impostazioni configurate verranno sostituite dai default di fabbrica premendo il tasto [Invio].

Choosing a Baud Rate

Page 3-38
Caution: If you choose a baud rate that does not match your console terminal baud rate, you will lose communication with the configuration interface when you press [Enter]. If communication is lost, set your console terminal to match the new service port setting.

Achtung: Bei Auswahl einer Baudrate, die nicht mit der Baudrate des Konsolenterminals übereinstimmt, geht die Kommunikation mit der Konsolenschnittstelle verloren, wenn Sie die Eingabetaste drücken. Stellen Sie in diesem Fall das Konsolenterminal so ein, daß es mit der neuen Einstellung der Service-Schnittstelle übereinstimmt.

Attention: Si vous sélectionnez un débit différent de celui de votre terminal, vous perdrez le contact avec l'interface de votre console dès que vous appuierez sur [Entrée]. Pour restaurer la communication, alignez le débit de votre terminal sur le nouveau débit de votre port de service.

Precaución: Si selecciona una velocidad de transmisión que no coincide con la velocidad de transmisión del terminal de la consola, perderá la comunicación con el interfaz de la consola al pulsar [Intro]. Si se pierde la comunicación, ajuste el terminal de la consola para que coincida con el nuevo valor del puerto de servicio.

Attenzione: Nel caso in cui si scelga una velocità di trasmissione non corrispondente a quella del terminale della console, la comunicazione con l'interfaccia della console cadrà premendo il tasto [Invio]. Se la comunicazione cade, impostare il terminale della console in modo tale che corrisponda alla nuova impostazione della porta di servizio.

Changing Passwords

Page 3-38
Caution: If you change the system-supplied default passwords, be sure to write the new passwords down and keep them in a safe place. If you forget the new passwords, you cannot access the console interface. In that case, contact Bay Networks for help.

Achtung: Wenn Sie die für das System standardmäßig eingestellten Paßwörter ändern, notieren Sie sich die neuen Paßwörter, und bewahren Sie sie an einem sicheren Ort auf. Falls Sie die neuen Paßwörter vergessen, können Sie nicht mehr auf die Konsolenschnittstelle zugreifen. Wenden Sie sich in diesem Fall an Bay Networks, um Unterstützung zu erhalten.

Attention: Si vous changez les mots de passe par défaut du système, assurez-vous de bien noter vos nouveaux mots de passe et de les conserver dans un endroit sûr. Si vous perdez vos nouveaux mots de passe, vous ne pourrez plus accéder à votre interface. Le cas échéant, veuillez contacter Bay Networks.

Precaución: Si modifica las contraseñas predeterminadas asignadas por el sistema, asegúrese de anotar las nuevas contraseñas y guárdelas en un lugar seguro. Si olvida las nuevas contraseñas, no podrá acceder al interfaz de la consola. En ese caso, póngase en contacto con Bay Networks para obtener ayuda al respecto.

Attenzione: In caso di modifica delle password predefinite nel sistema, assicurarsi di annotare le nuove password e di conservarle in un luogo sicuro. Nel caso in cui le nuove password vengano dimenticate, non sarà possibile accedere all'interfaccia della console. In tal caso, contattare la Bay Networks per avere assistenza.

Interrupting a Software Download

Page 3-48
Caution: Do not interrupt power to the device during the software download process. If the power is interrupted, the firmware image can become corrupted.

Achtung: Unterbrechen Sie die Stromzufuhr zum Gerät nicht, während die Software heruntergeladen wird. Bei Unterbrechung der Stromzufuhr kann das Firmware-Image beschädigt werden.

Attention: Ne pas couper l'alimentation de l'appareil pendant le chargement du logiciel. En cas d'interruption, le programme résident peut être endommagé.

Precaución: No interrumpa la alimentación del dispositivo durante el proceso de descarga del software. Si lo hace, puede alterar la imagen de la programación (firmware).

Attenzione: Non interrompere l'alimentazione elettrica al dispositivo durante il processo di scaricamento del software. In caso di interruzione, l'immagine firmware potrebbe danneggiarsi.

Removing the Top Cover

Page 4-1

Warning: To avoid bodily injury from hazardous electrical current, never remove the top cover of the device. There are no user-serviceable components inside.

Vorsicht: Um Verletzungsgefahr durch einen elektrischen Stromschlag auszuschließen, nehmen Sie niemals die obere Abdeckung vom Gerät ab. Im Geräteinnern befinden sich keine Komponenten, die vom Benutzer gewartet werden können.

Avertissement: Pour éviter tout risque d'électrocution, ne jamais retirer le capot de l'appareil. Cet appareil ne contient aucune pièce accessible par l'utilisateur.

Advertencia: A fin de evitar daños personales por corrientes eléctricas peligrosas, no desmonte nunca la cubierta superior de este dispositivo. Los componentes internos no son reparables por el usuario.

Avvertenza: Per evitare lesioni fisiche dovute a scariche pericolose di corrente, non rimuovere mai il coperchio superiore del dispositivo. I componenti interni non possono essere manipolati dall'utente.

Chapter 1
 Getting Started

Overview

This chapter provides an introduction to the BayStack 350 10/100 Autosense Switch and provides network configuration examples. The "Quick Start" section allows you to quickly set up switch parameters to manage the switch using Simple Network Management Protocol (SNMP) or the switch service port.

Hardware

There are two versions of the BayStack 350 switch: the Model 350F and the Model 350T (Figure 1-1).

Figure 1-1. \quad BayStack 350 10/100 Autosense Switch

BayStack 350 Switch Components

This section describes the user-accessible components of the BayStack 350 switches.

- The Model 350F switch provides 12 autosense 10/100BASE-TX ports and two 100BASE-FX fiber optic ports.
- The Model 350T switch provides 16 autosense 10/100BASE-TX ports.

Figure 1-2 identifies the location of the BayStack 350 switch ports, corresponding status LEDs, service port, and AC power receptacle.

For a description of each numbered component, see Table 1-1.

Figure 1-2. Front and back panels

		Table 1-1. Front and back panel components
Item	Icon/Label	Description
1	Power	Power LED (green)
		On: DC power is available to the switch's internal circuitry.
2	Diagnostics	Diagnostics LED (green)
		On: The switch passes the self-test.
		Blinking: A nonfatal error occurs during the self-test.
		Off: The switch fails the self-test.
3	13 and 14	100BASE-FX fiber optic port connectors (Model 350F only).
4	1 through 12*	10BASE-T/100BASE-TX RJ-45 (8-pin modular) port connectors. \dagger
5	13 and 14	100BASE-FX port status LEDs, ports 13 and 14 (Model 350F only).
6	100	100BASE-FX/TX port status LEDs (green):
		On: The corresponding port is set to operate at $100 \mathrm{Mb} / \mathrm{s}$.
		Blinking: The corresponding port is management disabled.
7	$10 \ddagger$	10BASE-T port status LEDs (yellow):
		On: The corresponding port is set to operate at $10 \mathrm{Mb} / \mathrm{s}$.
		Blinking: The corresponding port is management disabled.
8	FDX	Full-duplex port status LEDs (green):
		On: The corresponding port is in full-duplex mode.
		Off: The corresponding port is in half-duplex mode.
9	Activity	Port activity LEDs (green):
		Blinking: Indicates the network activity level for the corresponding port. A high level of network activity can cause LEDs to appear to be on continuously.
10		Manufacturing label: Lists the device model number, serial number, MAC address, and voltage rating.
11	RS232	Service port DB-9 (RS-232-D) serial port connector: Allows the attachment of a console terminal device for accessing the console interface (CI) screens.
12		AC power receptacle: Accepts the AC power cord (supplied).
*. 1 through 16 for BayStack Model 350T.		
\dagger. Require 100 -ohm unshielded twisted pair (UTP) cable. The RJ-45 connectors are wired as MDI-X ports to connect end stations without using crossover cables.		

Cooling Fans

Variable-speed cooling fans in the BayStack 350 switch provide cooling for the internal components. When you install the switch, be sure to allow enough space on both sides of the switch for adequate airflow.

Features

BayStack 350 switches provide wire-speed, Fast Ethernet switching that allows high-performance, low-cost connections to full-duplex and half-duplex 10 megabits per second (Mb / s) and $100 \mathrm{Mb} / \mathrm{s}$ Ethernet local area networks (LANs).

Based on advanced application-specific integrated circuit (ASIC) technology, BayStack 350 switches can be cost effectively deployed in $10 \mathrm{Mb} / \mathrm{s}$ networks. As performance requirements increase and $100 \mathrm{Mb} / \mathrm{s}$ LANs are deployed, each port uses autosensing* to support any combination of $10 \mathrm{Mb} / \mathrm{s}$ and $100 \mathrm{Mb} / \mathrm{s}$ Ethernet LANs.

One of the many benefits provided by the BayStack 350 switch is that network users now have the flexibility to grow from $10 \mathrm{Mb} / \mathrm{s}$ switching to $100 \mathrm{Mb} / \mathrm{s}$ switching using a single product.

The BayStack 350 switch offers the following features:

- High-speed forwarding rate: 1.6 million packets per second (peak)
- Learning rate: 1.6 million addresses per second (peak)
- Spanning Tree Protocol: IEEE 802.1D standards compliant
- Store-and-forward switch: Full-performance forwarding at full line speed
- Rate limiting: Adjustable broadcast and multicast packet-rate limits for control of broadcast and multicast storms

[^2]- SNMP agent support for the following Management Information Bases (MIBs):
— Bridge MIB (RFC 1493)
— Ethernet MIB (RFC 1643)
- Proprietary MIBs
- RMON MIB (RFC 1757)
— MIB-II (RFC 1213)
- Service port for console connection: Allows users to configure and manage the switch locally or remotely
- TELNET:
- Support for up to four simultaneous TELNET sessions
- Optional password protection
- Login timeout
- Failed-login guard
- Inactivity timeout
- Allowed source addresses
- Event logging
- IEEE 802.3u-compliant autonegotiation ports, with four modes:
- 10BASE-T half-duplex
- 10BASE-T full-duplex
- 100BASE-TX half-duplex
- 100BASE-TX full-duplex
- Remote monitoring (RMON), with four groups integrated:
- Statistics
- History
- Alarms
- Events
- Port-based virtual LANs (VLANs)
- Front-panel light emitting diodes (LEDs) to monitor the following:
- Power status
- System status
- Per-port status for the following:
- $100 \mathrm{Mb} / \mathrm{s}$ link
- $10 \mathrm{Mb} / \mathrm{s}$ link
- Half- and full-duplex transmission
- TX/RX activity
- Management enable/disable
- Upgradeable device firmware in nonvolatile flash memory using the Trivial File Transfer Protocol (TFTP)

Flash Memory Storage

The BayStack 350 switch uses flash memory to store the switch software image. Flash memory allows you to update the software image with a newer version without changing the switch hardware. An in-band connection between the switch and the TFTP load host is required to download the software image (refer to "Software Download" on page 3-48). For information about connecting a console terminal for this procedure, refer to "Service Port Cabling" on page 3-2.

If a BootP server is set up properly on the network and the BayStack 350 switch detects a corrupted software image during the self-test, the switch automatically uses TFTP to download a new software image.

BootP Automatic IP Configuration

The BayStack 350 switch has a unique 48-bit hardware address, or media access control (MAC) address, that is printed on a label on the back panel. You use this MAC address when you configure the network BootP server to recognize the BayStack 350 switch BootP requests. A properly configured BootP server enables the switch to automatically learn its assigned IP address, subnet mask, IP address of the default router (default gateway), and software image file name. Refer to Appendix D, "Sample BootP Configuration File," for an example of a BootP configuration file.

SNMP MIB Support

The BayStack 350 switch supports an SNMP agent with private MIB extensions, which ensures compatibility with existing network management tools. The BayStack 350 switch supports MIB-II (RFC 1213) and the RMON MIB (RFC 1757), which provide access to detailed management statistics. With SNMP management, you can configure SNMP traps (on individual ports) to be generated automatically for conditions such as an unauthorized access attempt or changes in a port's operating status.

Configuration and Switch Management

The BayStack 350 switch is shipped directly from the factory ready to operate in any 10BASE-T or 100BASE-TX standard network. You can manage the switch using the Bay Networks Optivity ${ }^{\circledR}$ network management software or any generic SNMP-based network management software; however, you must assign an IP address to the switch. You can set the switch's IP address by using the service port or BootP, which resides on the switch. For more information about using the service port to configure the switch manually, see Chapter 3, "Using the Console Interface."

Network Configuration

You can connect the BayStack 350 switch to workstations and personal computers (PCs) either directly, using a hub, or by creating a VLAN. This section provides three network examples using the BayStack 350 switch in the following configurations:

- Desktop connections for power workgroups
- Desktop connections for power workgroups and shared media hub
- VLAN workgroups

Note: The BayStack 350T and 350F switches can be used interchangeably in the following network examples.

Connecting Power Workgroups

Figure 1-3 shows BayStack 350 switches connecting dedicated power workgroups and standard departmental users. In this example, all users have access to $10 \mathrm{Mb} / \mathrm{s}$ bandwidth or $100 \mathrm{Mb} / \mathrm{s}$ bandwidth on any port.

Figure 1-3. BayStack 350 switches for power workgroups

Desktop/Segment Switch

Figure 1-4 shows power workgroups connected to servers through BayStack 350 switches in a small network. Network managers who do not want to provide each end station with the full $100 \mathrm{Mb} / \mathrm{s}$ bandwidth can designate a certain number of users that share the full bandwidth provided by one of the switch ports. For example, one workgroup is connected to a 10BASE-T hub and shares $10 \mathrm{Mb} / \mathrm{s}$ bandwidth provided by one of the BayStack 350 switch ports.

621 EA

Figure 1-4. BayStack 350 switch as a desktop/segment switch

Creating VLAN Workgroups

You can create and configure VLANs by segmenting networks into logical workgroups that are independent of physical connections and locations. You can define the workgroups according to project or department. As shown in Figure 1-5, workgroup members on VLANs share computer resources but cannot communicate with other workgroups. Access to specific servers is restricted to all but the assigned workgroup. Broadcast packets are confined to a specific VLAN, which relieves traffic congestion.

Refer to "VLAN Configuration" in Chapter 3 to learn how the BayStack 350 switches in Figure 1-5 are configured for this example.

Figure 1-5. Virtual LANs

Quick Start

This section provides Quick Start procedures for installing and setting up the BayStack 350 switch. It is intended for experienced installers or system administrators who are familiar with the BayStack 350 switch installation and setup procedures in this manual.

If you have experience installing network devices, or if you are installing multiple BayStack 350 switches, you can use the installation flowchart provided in this section to guide you through the installation. If you need more information about any of the steps listed in the flowchart, refer to Chapter 2, "Installation," for a complete explanation of the installation process.

After you have verified the installation, you can use other Quick Start procedures in this section to set up and begin managing the switch. Refer to Chapter 3, "Using the Console Interface," for detailed information about setting up the switch, and using the console interface (CI) menus and screens.

Quick Start to Installing the BayStack 350 Switch

You can use the installation flowchart (Figure 1-6) to install the BayStack 350 switch. If you need more information about any of the steps in the flowchart, refer to the appropriate section in Chapter 2, "Installation."

Figure 1-6. Installation flowchart

Quick Start to Managing the BayStack 350 Switch

If you are already familiar with managing network devices, you can use the Quick Start procedures in this section to set up and begin managing the BayStack 350 switch. The procedures assume that the BayStack 350 switch has been installed and verified (as described in Chapter 2, "Installation"), and that the network cables are attached to the switch.

This section describes how to manage the BayStack 350 switch using one of two methods:

- The service port interface, using the CI menus and screens
- An SNMP management application

Service Port Interface

If you are managing the BayStack 350 switch using the service port interface, follow these steps:

1. Connect a console terminal directly to the BayStack 350 switch service port or through a modem connection.

The console terminal can be a VT100-compatible terminal or a PC running VT100 terminal-emulation software (refer to "Service Port Cabling" in Chapter 3).
2. Configure the console terminal for 9600 baud, 8 data bits, no parity, and 1 stop bit.

Be sure to set the console terminal to online mode; do not leave it in setup mode.
3. Press $[\mathrm{Ctrl}]+\mathrm{C}$ on the console terminal keyboard.
4. The console interface ($\mathbf{C I}$) main menu appears.

For more information about the CI main menu, refer to "Using the CI Menus and Screens" in Chapter 3.

SNMP Management Applications

If you are using an SNMP management application to manage the BayStack 350 switch, you must first assign an IP address to the switch so that the SNMP software can communicate with it.

To assign the BayStack 350 switch IP address, follow these steps:

1. Connect a console terminal directly to the BayStack 350 switch service port or through a modem connection.

The console terminal can be a VT100-compatible terminal or a PC running VT100 terminal-emulation software (see "Service Port Cabling" in Chapter 3).
2. Configure the console terminal for 9600 baud, 8 data bits, no parity, and 1 stop bit.
Be sure to set the console terminal to online mode; do not leave it in setup mode.
3. Press $[\mathrm{Ctrl}]+\mathrm{C}$ on the console terminal keyboard.
4. The console interface ($\mathbf{C I}$) main menu appears.

For more information about the CI main menu, refer to "Using the CI Menus and Screens" in Chapter 3.
5. Choose the IP Configuration option from the main menu.

The IP Configuration screen appears.
6. In the IP Configuration screen, complete the following fields:

- In-Band IP Address
- In-Band Subnet Mask (if required)
- Default Gateway (if required)

7. Set SNMP traps, if required.

To set SNMP traps, refer to "SNMP Configuration" in Chapter 3.
8. Press $[\mathrm{Ctrl}]+\mathrm{C}$ to return to the main menu.

Chapter 2 Installation

Overview

This chapter explains how to install the BayStack 350 10/100 Autosense Switch. The switch can be placed on a tabletop or shelf, mounted on a wall, or installed in a 19 -inch equipment rack.

To install the BayStack 350 switch, you unpack the equipment, physically install the switch, connect the network cables, connect the power, and then verify the installation.

Required Tools and Materials

You will need the following tools to install the BayStack 350 switch:

- For installation in a standard 19-inch equipment rack, use a Phillips (or cross-head) screwdriver.
- For wall mounting, you need four screws (not supplied). The screw size and type depends on the composition of the wall on which you intend to mount the switch. Have an experienced maintenance person choose the appropriate hardware for your wall composition.

Caution: The screws and wall composition must be able to withstand the weight of the device, plus the additional weight of the attached network cables and power cords.

Package Contents

While unpacking the equipment, verify that your BayStack 350 switch shipment includes all of the items shown in Figure 2-1.

584FA

Figure 2-1. Package contents

If any items are missing or damaged, contact the sales agent or the customer service representative from whom you purchased the BayStack 350 switch.

Site Preparation

This section describes what you need to do to prepare your site before installing the switch.

Hardware

Verify that you have the hardware components appropriate for your method of installation:

- Console terminal: Ensure that you have a console terminal available. The console terminal must be a VT100-compatible terminal or a PC running VT100 terminal-emulation software. (Although the BayStack 350 switch is operational as soon as you install it, you can customize the operational parameters to suit your needs.)
- Rack mounting: You need a single-unit rack space for installing the BayStack 350 switch in a standard 19-inch equipment rack.

- Surface mounting:

- Tabletop: The table or shelf must be level and able to support at least 10 pounds, plus the weight of the suspended port cables. If you intend to stack additional BayStack 350 switches, one on top of another, remember to include this weight in your calculations when selecting a suitable table or shelf.

Caution: When this device is installed in a stack on a shelf or tabletop, the accumulated weight of the port cables increases with the height of the shelf or tabletop.

- Wall-mount screws: Mounting brackets are provided for securing the BayStack 350 switch onto a tabletop, shelf, or wall. However, because wall compositions vary at different sites, Bay Networks recommends that an experienced maintenance person choose the appropriate wall mounting hardware to safely mount your BayStack 350 switch.
- Network cabling: Ensure that all network cables are in place and that they have been tested and tagged before you begin the installation.

Software

Verify that you have the software components appropriate for your method of installation:

- BootP server: The BayStack 350 switch can learn its IP address through BootP. To use this feature, ensure that you have a properly configured BootP server in your network.
- TFTP server: You can keep your BayStack 350 switch firmware up-to-date by upgrading the firmware as new versions become available. To upgrade the firmware, you need a properly configured TFTP server in your network.

The Bay Networks network management applications EZ LAN ${ }^{\text {N }}$, Optivity Campus ${ }^{\text {TM }}$, and Optivity Enterprise ${ }^{\text {TM }}$ can help you with these BootP and firmware functions.

Environment

The following items must conform to the specifications described in Appendix A, "Technical Specifications":

- Temperature: Ensure that the temperature in the operating environment remains between 0° and $40^{\circ} \mathrm{C}\left(32^{\circ}\right.$ and $104^{\circ} \mathrm{F}$). Do not place the BayStack 350 switch in direct sunlight or near warm air exhausts or heaters.
- Humidity: Ensure that the humidity level in the operating environment does not exceed 85 percent and that no water condenses on or around the BayStack 350 switch.
- Ventilation: Ensure that there is adequate airflow and clearance for air circulation around the BayStack 350 switch. Air enters the switch on one side and flows out the opposite side. Allow at least two inches of ventilation space on both sides of the BayStack 350 switch.
- Electrical power: Ensure that the site's power outlet meets the power requirement of the BayStack 350 switch and is within 1.8 meters (6 feet) of the installation location.

Installing the BayStack 350 Switch

This section explains how to install, power up, and verify the operation of the BayStack 350 switch. Before you begin these procedures, read and follow the instructions in "Site Preparation" on page 2-3.

\triangle

Warning: To avoid bodily injury from hazardous electrical current, do not connect the power cord until instructed to do so.

You can install the BayStack 350 switch in any of the following locations:

- Surface mounting
- Tabletop or shelf (secured or unsecured)
- Wall mount
- Rack mounting
- 19-inch equipment rack

Surface Mounting

The BayStack 350 switch can be mounted on any surface that can safely support the weight of the switch and attached cables, as long as there is adequate space around the unit for ventilation and access to cable connectors. You can use the mounting brackets supplied with the switch to secure it to the installation location.

Note: In most cases, it is not necessary to secure the BayStack 350 switch to a tabletop or shelf. However, if conditions warrant securing the switch (for example, in locations where the switch might accidentally fall from a shelf or overhead location), you can secure the switch using two mounting brackets (supplied).

Attaching the Mounting Bracket

Figure 2-2 shows the mounting-bracket positions for mounting the BayStack 350 switch on a flat surface such as a tabletop, shelf, or wall. When rack mounting the switch, you use the same brackets, but position them to attach to the rack-mounting holes in the chassis (Figure 2-5).

To attach the mounting brackets for a surface mount, follow these steps:

1. Locate the rack-mounting holes on each side of the switch (Figure 2-2).
2. Using a Phillips (or cross-head) screwdriver, attach a mounting bracket to each side of the switch using the screws supplied with the unit.
3. Secure the switch to the tabletop, shelf, or wall as described in the appropriate section.

Figure 2-2. Attaching the mounting brackets for a surface mount

Installing on a Tabletop or Shelf

To install the BayStack 350 switch on a tabletop or shelf, follow these steps:

1. Attach a rubber footpad to each corner on the bottom of the unit (Figure 2-3).
2. Position the switch on the tabletop or shelf, with the front panel facing you. Be sure to leave adequate space around the unit for ventilation and access to the cables.
3. If you are securing the switch to a tabletop or shelf, insert two screws (not supplied) through each of the mounting brackets, then tighten the screws.
4. Proceed to "Connecting Port Cables" on page 2-12 to connect the network cables.

Figure 2-3. Attaching the rubber footpads

Wall Mounting

You can mount the BayStack 350 switch on any wall that can safely support the weight of the device and attached cables (see "Site Preparation" on page 2-3 for safety considerations). The BayStack 350 switch can be mounted with or without the rubber footpads.

Before You Begin

Before mounting the BayStack 350 switch on a wall, note the following considerations:

- The BayStack 350 switch must be wall mounted with the front panel facing upward, as shown in Figure 2-4.
- Because the LEDs are located on the front panel, you should position the switch at a height that allows the LEDs to be visible at all times.
- Do not let the attached port cables hang freely from the port connectors. Install plastic cable clamps to support and dress the cables.
- Because wall composition varies at each site, wall-mounting screws are not supplied. You should choose the appropriate mounting hardware for your wall composition.
- A common and safe method for attaching devices to most walls is to attach the device to a piece of plywood (at least 0.5 in. thick) that is firmly secured to the wall, preferably to the wall studs.

Wall Mounting the Switch

To mount the BayStack 350 switch on a wall, follow these steps:

1. Using a Phillips (or cross-head) screwdriver, attach a mounting bracket to each side of the switch using the screws supplied with the unit (Figure 2-2).
2. Insert two screws (not supplied) through each of the mounting brackets, then tighten the screws (Figure 2-4).
3. Proceed to "Connecting Port Cables" on page 2-12 to connect the network cables.

587FA
Figure 2-4. Wall mounting the BayStack 350 switch

Rack Mounting

The BayStack 350 switch occupies one single-unit rack space and can be installed in most standard 19-inch racks.

Caution: When mounting this device in a rack, do not stack units directly on top of one another in the rack. Each unit must be secured to the rack with appropriate mounting brackets. Mounting brackets are not designed to support multiple units.

To install the BayStack 350 switch in a 19-inch rack, follow these steps:

\longrightarrow
Note: When mounting this device in a rack, do not attach the four rubber footpads supplied with the unit.

1. If rubber footpads are attached to the bottom of the unit, remove them.
2. Locate the rack-mounting holes on each side of the switch (Figure 2-5).
3. Using a Phillips (or cross-head) screwdriver, attach a mounting bracket to each side of the switch using the screws supplied with the unit.

610FA

Figure 2-5. Attaching the mounting brackets for a rack mount
4. Position the switch in the rack and align the holes in the mounting bracket with the holes in the rack chassis (Figure 2-6).
5. Insert two screws (appropriate for your 19-inch rack, not supplied) through each of the mounting brackets, then tighten the screws.
6. Proceed to "Connecting Port Cables" on page 2-12 to connect the network cables.

611FA

Figure 2-6. Installing the BayStack 350 switch in a 19-inch rack

Connecting Port Cables

This section describes how to connect the BayStack 350 switch ports to the network. Depending on your network configuration requirements, connect the RJ-45 port cables, 100BASE-FX port cables, or both. After connecting the port cables, proceed to "Connecting Power" on page 2-14 to connect the AC power cord and power up the BayStack 350 switch.

The BayStack 350 10BASE-T/100BASE-TX switch ports are configured with RJ-45 connectors that are wired as MDI-X ports. As in conventional Ethernet repeater hubs, the BayStack 350 switch ports connect via straight-through cables to the network interface card (NIC) in a node or server. When connecting to an Ethernet hub or to another switch, you must use a crossover cable. Refer to Appendix B, "Connectors and Pin Assignments," for more information.

Note: By default, all BayStack 350 10BASE-T/100BASE-TX switch ports are set with the autonegotiation feature enabled. This feature allows any port to match the best service provided by the connected station, up to $100 \mathrm{Mb} / \mathrm{s}$ in full-duplex mode.

RJ-45 Port Cables

To connect the RJ-45 port cables, insert the cable plug into the appropriate port connector until the release tab snaps into the locked position (Figure 2-7).

5634EA
Figure 2-7. Connecting RJ-45 port cables

100BASE-FX Port Cables

Warning: Fiber optic equipment can emit laser or infrared light that can injure your eyes. Never look into an optical fiber or connector port. Always assume that fiber optic cables are connected to a light source.

To connect the 100BASE-FX port cables, align the keyway on the cable plug with the key slot on the appropriate connector, then insert the cable plug into the fiber optic port connector (Figure 2-8).

156FA
Figure 2-8. Connecting 100BASE-FX port cables

After connecting the port cables, proceed to the next section, "Connecting Power," to connect the AC power cord and power up the BayStack 350 switch.

Connecting Power

The BayStack 350 switch does not have a power on/off switch. When you connect the AC power cord to a suitable AC outlet, the switch powers up immediately.

Warning: Removal of the power cord is the only way to turn off power to this device. The power cord must always be connected in a location that can be accessed quickly and safely in case of an emergency.

To connect the AC power cord, follow these steps:

1. Plug one end of the $A C$ power cord into the $A C$ power receptacle, located on the BayStack 350 switch back panel.
2. Plug the other end of the AC power cord into a grounded AC power outlet.
3. Proceed to the next section, "Verifying the Installation," to verify proper operation.

Verifying the Installation

To verify proper operation of the BayStack 350 switch, observe the front-panel LEDs as described in Table 2-1.

Table 2-1. Power-up sequence

Stage	Description	LED indication
1	Immediately after AC power is applied to the switch, DC power is available to the switch's internal circuitry.	The Power LED turns on within 5 seconds (Figure 2-9). If the Power LED does not turn on, verify that power is available at the AC power outlet and that the power cable is fastened securely at both ends. If the Power LED remains off, contact the sales agent or the customer service representative from whom you purchased the BayStack 350 switch.
2	The switch initiates a self-test.	As subroutines are initiated by the self-test, the port status LEDs flash various patterns. When the switch passes the self-test (within 10 seconds), the Diagnostics LED turns on (Figure 2-9). If a nonfatal error occurs during the self-test, the Diagnostics LED blinks. If the switch fails the self-test, the Diagnostics LED remains off. Contact the sales agent or the customer service representative from whom you purchased the BayStack 350 switch.

Figure 2-9. Observing LEDs to verify proper operation

After verifying proper operation of the BayStack 350 switch, refer to Chapter 3, "Using the Console Interface," to configure and manage the switch.

Chapter 3
 Using the Console Interface

Overview

This chapter describes how to configure and manage the BayStack 350 10/100 Autosense Switch using the menu-driven console interface (CI). You can access the CI menus and screens through the service port located on the switch back panel. You can also manage the BayStack 350 switch using Bay Networks Optivity network management software or a generic SNMP-based management application; however, you must first assign an IP address to the switch, as described in this chapter. If you have a properly configured BootP server in your network, the IP address of the BayStack 350 switch will be detected automatically, so you will not have to configure the IP address.

\square

Note: Refer to your network management documentation for information about SNMP network management.

Console Interface

The CI consists of menus and screens that enable you to manage the BayStack 350 switch and monitor its performance. You can manage the switch by using configuration menus to change its operational parameters. You can monitor the performance of the switch by using the statistics screen, which displays the counters of the switch ports.

You can access the CI menus and screens in the following ways:

- Locally, through a console terminal (must be a VT100-compatible terminal or a PC running VT100 terminal-emulation software)
- Remotely, through a dial-up modem connection
- Through an in-band TELNET session

Service Port Cabling

You can connect a console terminal directly to the BayStack 350 switch service port, or you can connect a modem to the switch service port for remote access to the CI menus and screens.

\rightarrow

Note: To ensure correct connections between the service port and the console terminal or modem port, refer to the service-port pin assignments in Appendix B, "Connectors and Pin Assignments."

Console Terminal Requirements

To connect a console terminal to the BayStack 350 switch service port, you need the following equipment:

- An ASCII character terminal that has an RS-232 serial port, or a computer that has an RS-232 serial port and terminal emulation (typically a PC running common communications software)
- A standard RS-232 serial communications cable with a DB-9 connector at one end for connection to the service port, and an appropriate connector (typically a DB-9 or DB-25 connector) at the other end for connection to the serial port on the console terminal

Modem Requirements

To connect a modem to the BayStack 350 switch service port, you need the following equipment:

- A 9600 baud (or higher speed) modem is recommended. The service port speed is set to 9600 baud (the default factory setting), but supports 2400 to 38400 baud, as long as the speed at both ends of the communications link are identical.
- A standard RS-232 serial communications null-modem cable with a DB-9 connector at one end for connection to the service port, and an appropriate connector (typically a DB-9 or DB-25 connector) at the other end for connection to the modem's serial port.

Set the modem's serial port speed to match the speed of the BayStack 350 switch service port (9600 baud is the default). See "Service Port Configuration" on page 3-37 to modify the switch service port.

Connecting to the BayStack 350 Switch Service Port

To connect a console terminal or modem to the BayStack 350 switch service port, follow these steps:

1. Plug the RS-232 cable DB-9 receptacle into the service port plug. Secure the connection by tightening the two screws on the DB-9 receptacle.
2. Plug the other end of the RS-232 cable (DB-9 or DB-25, as appropriate) into the RS-232 serial port on the console terminal or modem.

Accessing the Cl Menus and Screens

You can access the CI menus and screens locally through a console terminal, remotely through a dial-up modem connection, or through a TELNET session.

To access the CI menus and screens through a TELNET session, your workstation must be configured with an IP address, and you must know the IP address of the switch in order to establish a link. You can configure an IP address for the BayStack 350 switch by using a console terminal (as described in this section). If you have a properly configured BootP server in your network, the IP address of the BayStack 350 switch will be detected automatically, so you will not have to configure the IP address. Refer to your TELNET documentation for information about establishing TELNET connections.

To access the CI menus and screens, follow these steps:

1. Power up the console terminal, or make sure that your PC is running in terminal-emulation mode.
2. Set the console terminal configuration parameters as follows:

- 9600 baud
- 8 data bits
- No parity
- 1 stop bit

3. Set the console terminal to online mode; do not leave it in setup mode.
4. Press $[\mathrm{Ctrl}]+\mathrm{C}$ on the console terminal keyboard.

The CI main menu appears. For more information about using the main menu, proceed to the next section, "Using the CI Menus and Screens."

Using the CI Menus and Screens

The CI menus and screens provide commands that allow you to configure and manage the BayStack 350 switch. Help prompts at the bottom of each menu and screen explain how to enter data in the highlighted field and how to navigate the CI menus and screens.

Although some commands take effect immediately, other commands are followed by an ellipsis (for example, IP Configuration...), indicating that there is a submenu with other options.

Some commands can switch between several possible settings; you use these commands to toggle a condition. Other commands allow you to enter information; you use these commands to set or modify a parameter.

Navigating the Cl Menus and Screens

Use the following methods to navigate the CI menus and screens:

- To select a command:
a. Use the arrow keys to highlight the command name.
b. Press [Enter].

The command takes effect immediately after you press the [Enter] key.
Alternatively, you can press the key corresponding to the underlined letter in the command name. For example, to select the Switch Configuration command in the main menu, press the [W] key. Note that the text characters are not case-sensitive.

- To toggle between several possible settings:
a. Use the space bar to highlight the setting.
b. Press [Enter].
- To clear a string field:
a. Position the cursor in the string field.
b. Press $[\mathrm{Ctrl}]+\mathrm{K}$.
- To return to the previous menu, press [Ctrl]+R.
- To return to the main menu at any time, press [Ctrl]+C.

Screen Fields and Descriptions

Figure 3-1 shows a map of the CI screens. The remainder of this chapter describes the CI screens and their fields, beginning with the main menu.

614EA
Figure 3-1. Map of console interface screens

The CI screen examples provided in this chapter are for a BayStack Model 350T switch. Most of the screens and fields apply to both the BayStack Model 350T switch and the BayStack Model 350F switch. If there are differences, it is clearly noted in the text.

The CI screens for your switch will show the correct model name in the screen title and the correct number of ports and port type.

Main Menu

This section describes the commands available from the CI main menu (Figure 3-2). The CI screens and submenus for these commands are described in the following sections.

Note: The field values shown in the CI screens in this section are provided as examples only.

Figure 3-2. Console interface main menu

Table 3-1 describes the CI main menu commands.

Command	Description
IP Configuration...	Displays the IP Configuration screen (see "IP Configuration" on page 3-9). This screen allows you to set or modify IP configuration parameters.
SNMP Configuration...	Displays the SNMP Configuration screen (see "SNMP Configuration" on page 3-14). This screen allows you to set or modify the SNMP read-only community and read-write community strings, enable or disable the authentication trap, set the IP address of trap receivers, and set the trap community strings.
System Characteristics...	Displays the System Characteristics screen (see "System Characteristics" on page 3-16). This screen allows you to view switch characteristics such as the number of resets and the hardware and firmware version. This screen also contains three user-configurable fields: sysContact, sysName, and sysLocation.
Switch Configuration...	Displays the Switch Configuration Menu (see "Switch Configuration" on page 3-18). This menu provides the following configuration commands: MAC Address Table, VLAN Configuration, Port Configuration, Rate Limiting Configuration, Display Port Statistics, and Clear Port Statistics.
Service Port Configuration...	Displays the Service Port Configuration screen (see "Service Port Configuration" on page 3-37).
Spanning Tree Configuration...	Displays the Spanning Tree Configuration Menu (see "Spanning Tree Configuration" on page 3-39).
TELNET Configuration...	Displays the TELNET Configuration screen (see "TELNET Configuration" on page 3-45).
Software Download...	Displays the Software Download screen (see "Software Download" on page 3-48).
Display Event Log	Displays the Event Log screen (see "Display Event Log" on page 3-51).
Reset	Resets the switch with the current configuration settings. When you select this command, the switch resets, runs a self-test, and displays the main menu.

Table 3-1. Console interface main menu commands (continued)

Command	Description
Reset to Default Settings	Resets the switch to the factory default configuration settings. When you select this command, the switch resets, runs a self-test, and displays the main menu.
Caution: If you choose the Reset to Default Settings command, all of your configured settings will be replaced with factory default settings when you press [Enter].	
The Logout command allows a user in a TELNET session or a user working at a password-protected console terminal to terminate the session (see "Logout" on page 3-55).	

IP Configuration

The IP Configuration screen (Figure 3-3) allows you to set or modify the BayStack 350 switch IP configuration parameters. Data that you enter in the user-configurable fields takes effect as soon as you press [Enter].

Note: The read-only fields in this screen are updated based on the BootP mode specified in the BootP Request Mode field. (See "Choosing a BootP Request Mode" on page 3-11 for more information.)

IP Configuration

BootP Request Mode: [BootP When Needed]

Figure 3-3. IP Configuration screen

Table 3-2 describes the IP Configuration screen fields.

Field	Description	
BootP Request Mode	One of four modes of operation for BootP. (See "Choosing a BootP Request Mode" on page 3-11 for details about the four modes.)	
	Default Value	BootP When Needed
	Range	BootP When Needed, BootP Always, BootP Disabled, BootP or Last Address
Configurable	Column header for the user-configurable fields in this screen.	
In Use	Column header for the read-only fields in this screen. The read-only data displayed in this column represents data that is currently in use.	
Last BootP	Column header for the read-only fields in this screen. The read-only data displayed in this column represents data obtained from the last BootP reply received.	
In-Band IP Address	The in-band IP address of the BayStack 350 switch.	
	Default Value	0.0.0.0 (no IP address assigned)
	Range	Four-octet decimal IP address notation, where each octet of the address is represented as a decimal value, separated by a decimal point
In-Band Subnet Mask	The subnet address mask associated with the in-band IP address shown on the screen.	
	Network routers use the subnet mask to determine the network or subnet address portion of a host's IP address. The bits in the IP address that contain the network address (including the subnet) are set to 1 in the address mask, and the bits that contain the host identifier are set to 0 .	
	Default Value	0.0.0.0 (no subnet mask assigned)
	Range	Four-octet decimal IP address notation, where each octet is represented as a decimal value, separated by a decimal point
Default Gateway	The IP address of the default gateway.	
	Default Value	0.0.0.0 (no IP address assigned)
	Range	Four-octet decimal IP address notation, where each octet is represented as a decimal value, separated by a decimal point

Choosing a BootP Request Mode

The BootP Request Mode field in the IP Configuration screen allows you to choose which method the switch uses to broadcast BootP requests:

- BootP When Needed
- BootP Always
- BootP Disabled
- BootP or Last Address

The following sections describe the BootP request modes.

BootP When Needed

This mode allows the switch to request an IP address if one has not already been set from the console terminal.

When selected, this mode operates as follows:

- When the IP data is entered from the console terminal, the data becomes the in-band address of the switch and BootP requests are not broadcast. The switch can be managed using this in-band IP address.
- When the in-band IP address is not set from the console terminal, the switch broadcasts BootP requests until it receives a BootP reply containing an IP address. If the switch does not receive a BootP reply that contains an IP address, the switch cannot be managed in-band.

If an IP address is not currently in use, these actions take effect immediately.
If an IP address is currently in use, these actions take effect only after the switch is reset or power cycled.

BootP Always

This mode allows the switch to be managed only when configured with the IP address obtained from the BootP server.

When selected, this mode operates as follows:

- The switch continues to broadcast BootP requests, regardless of whether an in-band IP address is set from the console terminal.
- If the switch receives a BootP reply that contains an in-band IP address, the switch uses this new in-band IP address.
- If the switch does not receive a BootP reply, the switch cannot be managed using the in-band IP address set from the console terminal.

If an IP address is not currently in use, these actions take effect immediately.
If an IP address is currently in use, these actions take effect only after the switch is reset or power cycled.

BootP Disabled

This mode allows the switch to be managed only by using the IP address set from the console terminal.

When selected, this mode operates as follows:

- The switch does not broadcast BootP requests, regardless of whether an IP address is set from the console terminal.
- The switch can be managed only by using the in-band IP address set from the console terminal.

These actions take effect after the switch is reset or power cycled, even if an IP address is not currently in use.

BootP or Last Address

This mode allows the switch to be managed even if a BootP server is not be reachable.

When selected, this mode operates as follows:

- When the IP data is entered from the console terminal, the data becomes the in-band address of the switch and BootP requests are not broadcast. The switch can be managed using this in-band IP address.
- When the in-band IP address is not set from the console terminal, the switch broadcasts BootP requests until it receives a BootP reply containing an in-band IP address. If the switch does not receive a BootP reply that contains an in-band IP address within 10 minutes, the switch uses the last in-band IP address that it received from a BootP server. This IP information is displayed in the Last BootP column.

If an IP address is not currently in use, these actions take effect immediately.
If an IP address is currently in use, these actions take effect only after the switch is reset or power cycled.

SNMP Configuration

The SNMP Configuration screen (Figure 3-4) allows you to set or modify the SNMP configuration parameters.

```
                                    SNMP Configuration
Read-Only Community String: [ public ]
Read-Write Community String: [ private ]
Trap #1 IP Address: [ 0.0.0.0 ]
    Community String: [ ]
Trap #2 IP Address: [ 0.0.0.0 ]
    Community String: [ ]
Trap #3 IP Address: [ 0.0.0.0 ]
    Community String: [ ]
Trap #4 IP Address: [ 0.0.0.0 ]
    Community String: [ ]
    Authentication Trap: [ Enabled ]
Enter text, press <Return> or <Enter> to select choice.
Press Ctrl-R to return to previous menu. Press Ctrl-C to return to Main Menu.
```

Figure 3-4. SNMP Configuration screen

Table 3-3 describes the SNMP Configuration screen fields.

Field	Description	
Read-Only Community String	The community string used for in-band read-only SNMP operations.	
	Default Value	public
	Range	Any AS
Read-Write Community String	The community string used for in-band read-write SNMP operations.	
	Default Value private	
	Range	Any AS
Trap \#1 IP Address*	Number one of four trap IP addresses. Successive trap IP address fields are numbered 2,3 , and 4 . Each trap address has an associated community string (see the next field description).	
	Default Value	0.0.0.0
	Range	Four-oc octet of separa
Community String	The community string associated with one of the four trap IP addresses (see the Trap \#1 IP Address field description).	
	Default Value	Zero-len
	Range	Any AS
Authentication Trap	Determines whether a trap will be sent when there is an SNMP authentication failure.	
	Default Value	Enabled
	Range	Enabled

*. The Trap IP Address and Community String fields can be set using a MIB table (in a Bay Networks proprietary MIB). The status of the row in the MIB table can be set to Ignore. If the row status is set to Ignore, the fields appear to be set when viewed from the console terminal; however, no traps will be sent to that address until the row status is set to Valid.

System Characteristics

The System Characteristics screen (Figure 3-5) allows you to view system characteristics and contains three user-configurable fields: sysContact, sysName, and sysLocation.

Figure 3-5. System Characteristics screen

Table 3-4 describes the System Characteristics screen fields.

System Characteristics screen fields		
Field	Description	
MAC Address	The MAC address of the BayStack 350 switch.	
Reset Count	A read-only field that indicates the number of resets since the switch was originally loaded with operational firmware.	
	Default Value	1
	Range	0 to $2^{32}-1$
Last Reset Type	A read-only field that indicates the last type of reset.	
	Default Value	Power Cycle
	Range	Power Cycle, Software Download, Management Reset, Management Factory Reset
sysDescr	A read-only field that specifies the hardware and software version.	
sysObjectID	A read-only field that provides a unique identification of the device, which contains the vendor's private enterprise number.	
sysUpTime	A read-only field that shows the length of time since the last reset. Note that this field is updated when the screen is redisplayed.	
sysServices	A read-only field that indicates the device's physical and data link layer functionality.	
sysContact	The name and phone number of the person responsible for the switch.	
	Default Value	Zero-length string
	Range	Any ASCII string of up to 56 printable characters*
sysName	A name that uniquely identifies the switch.	
	Default Value	Zero-length string
	Range	Any ASCII string of up to 56 printable characters*
sysLocation	The physical location of the switch.	
	Default Value	Zero-length string
	Range	Any ASCII string of up to 56 printable characters

*. Although this field can be set up to 255 characters from a Network Management Station (NMS), only 56 characters are displayed on the console terminal.

Switch Configuration

The Switch Configuration Menu (Figure 3-6) allows you to set or modify your switch configuration.

Figure 3-6. Switch Configuration Menu

Table 3-5 describes the Switch Configuration Menu commands.

Table 3-5.	Switch Configuration Menu commands			
Command	Description		MAC Address Table	Displays the MAC Address Table screen (see "MAC Address Table" on page 3-20). This screen allows you to view the MAC addresses that the switch has learned.
:---	:---			
VLAN Configuration...	Displays the VLAN Configuration screen (see "VLAN Configuration" on page 3-22). This screen allows you to set up VLAN workgroups.			
Port Configuration...	Displays the Port Configuration screen (see "Port Configuration" on page 3-28). This screen allows you to configure a specific switch port or all switch ports.			
Rate Limiting	Displays the Rate Limiting Configuration screen (see "Rate Limiting Configuration" on page 3-30). This screen allows you to limit the forwarding rate of broadcast and multicast packets.			
Display Port Statistics	Displays the Port Statistics screen (see "Port Statistics" on page 3-32). This screen allows you to view detailed information about any switch port.			
Clear Port Statistics	Displays the Clear Port Statistics screen (see "Clear Port Statistics" on page 3-36). This screen allows you to reset accumulated counters for a specific switch port or for all switch ports.			
Return to Main Menu	Exits the Switch Configuration Menu and displays the main menu.			

MAC Address Table

The MAC Address Table screen (Figure 3-7) allows you to view the MAC addresses that the switch has learned. You can also use this screen to search for a specific MAC address.

Note: This screen does not refresh dynamically to show new entries. To refresh the screen, press $[\mathrm{Ctrl}]+\mathrm{P}$ or $[\mathrm{Ctrl}]+\mathrm{N}$.

Figure 3-7. MAC Address Table screen

Table 3-6 describes the MAC Address Table screen fields.

Table 3-6.	MAC Address Table screen fields
Field	Description
Aging Time	Specifies how long a learned MAC address remains in the switch's forwarding database. If an entry is inactive for a period of time that exceeds the specified aging time, the address is removed.
	Default Value $\quad 300$ seconds
	Range $\quad 10$ to $1,000,000$ seconds
Find an Address	Allows the user to search for a specific MAC address.
	Default Value $\quad 00-00-00-00-00-00$ (no MAC address assigned)
	Range
	$00-00-00-00-00-00$ to FF-FF-FF-FF-FF-FF

VLAN Configuration

The VLAN Configuration screen (Figure 3-8) allows you to configure the BayStack 350 switch with up to eight virtual LANs (VLANs). The screen provides a matrix that you use to group the switch ports into logical (virtual) workgroups. Users in each logical workgroup can share resources but cannot communicate with users in other logical workgroups.

Figure 3-8 shows the default settings for the VLAN Configuration screen, with all 16 ports configured for VLAN V1.

Figure 3-8. VLAN Configuration screen

To group switch ports into logical workgroups, select the port numbers under the VLAN names. To enable a port to be shared by users on different VLANs, select that port under each VLAN you want users to share.

You can create VLANs for one BayStack 350 switch, or you can create VLANs that span multiple switches. However, each switch that participates in the VLAN configuration must be configured separately.

You can also assign multiple VLANs to a port connected to a server, which allows the server to be shared by multiple logical workgroups.

Note: To assign multiple VLANs to two switches, one connection per VLAN is required between the switches. Do not assign multiple VLANs to switch-to-switch connections.
"Sample VLAN Configuration" on page 3-24 shows the VLAN Configuration screens for a VLAN that spans multiple BayStack 350 switches.

Sample VLAN Configuration

Figure 3-9 shows an example of a VLAN configuration that spans multiple BayStack 350 switches. Each switch (S1, S2, and S3) participates in the VLAN configuration and is configured individually.

Figure 3-9. VLAN configuration spanning multiple BayStack 350 switches

Figure 3-10, Figure 3-11, and Figure 3-12 show the VLAN Configuration screen settings for switches $\mathrm{S} 1, \mathrm{~S} 2$, and S3, respectively.

Figure 3-10. VLAN Configuration screen for switch S1

Figure 3-11. VLAN Configuration screen for switch S2

Figure 3-12. VLAN Configuration screen for switch S3

Port Configuration

The Port Configuration screen (Figure 3-13) allows you to configure a specific switch port or all switch ports. You can set the switch ports to autonegotiate for the highest available speed of the connected station, or you can set the speed for selected switch ports.

Note: The BayStack Model 350F Port Configuration screen displays only 14 ports. Ports 13 and 14 are 100BASE-FX fiber optic ports that can be set to $100 \mathrm{Mbs} /$ Half or $100 \mathrm{Mbps} /$ Full. You cannot modify the Auto Negotiation field for the fiber optic ports.

Figure 3-13. Port Configuration screen

Table 3-7 describes the Port Configuration screen fields.

Ta	nfiguration screen fields
Field	Description
Port	Indicates the switch port numbers, from 1 to 16 , that correspond to the field settings in that row of the screen (for example, the field settings in row 2 apply to switch port 2). Note that settings in the All row (bottom row) apply to all 16 switch ports.
Status	Allows you to disable any of the switch ports. You can use this feature to control access to any switch port.
	Default Value Enabled
	Range Enabled, Disabled
Link	A read-only field that indicates the present link state of the corresponding port, as follows: - Up:The port is connected and operational. - Down: The port is not connected or is not operational.
Auto Negotiation*	When enabled, sets the corresponding port speed to match the best service provided by the connected station, up to $100 \mathrm{Mb} / \mathrm{s}$ in full-duplex mode.
	Default Value Enabled
	Range Enabled, Disabled
Speed/Duplex \dagger	Allows you to manually configure any port to support an Ethernet speed of 10 or $100 \mathrm{Mb} / \mathrm{s}$, in half- or full-duplex mode.
	Range $\quad 10 \mathrm{Mbs} /$ Half, $10 \mathrm{Mbs} / \mathrm{Full}, 100 \mathrm{Mbs} /$ Half, $100 \mathrm{Mbs} /$ Full

[^3]
Rate Limiting Configuration

The Rate Limiting Configuration screen (Figure 3-14) allows you to limit the forwarding rate of broadcast and multicast packets.

You can use this screen to view the percentage of broadcast packets and multicast packets received, on a per-port basis. When the volume of broadcast and multicast packets is high (often referred to as a "storm") and places severe strain on the network, you can set the forwarding rate of those packet types to not exceed a specified percentage of the total available bandwidth.

■
Note: The BayStack Model 350F Rate Limiting Configuration screen displays only 14 ports.

Figure 3-14. Rate Limiting Configuration screen

Table 3-8 describes the Rate Limiting Configuration screen fields.

Table 3-8. \quad Rate Limiting Configuration screen fields	
Field	Description
Port	Indicates the switch port numbers, from 1 to 16, that correspond to the field settings in that row of the screen (for example, the field settings in row 2 apply to switch port 2). Note that the settings in the All row (bottom row) apply to all 16 switch ports. Allows you to select the packet types for rate limiting or viewing.
Default Value Both	

[^4]
Port Statistics

The Port Statistics screen (Figure 3-15) allows you to view detailed information about a switch port. The screen is divided into two sections (Received and Transmitted) so that you can compare and evaluate throughput or other port parameters. All screen data is updated (refreshed) approximately every two seconds.

You can also reset to zero the port counters displayed in the Port Statistics screen. To do this, see "Clear Port Statistics" on page 3-36.

Figure 3-15. Port Statistics screen

Table 3-9 describes the Port Statistics screen fields.

Note: With the exception of the Port field, all fields in this screen are read-only.

Port Statistics screen fields	
Field	Description
Port	Allows you to select the number of the port you want to view.
	To view another port, type its port number and press [Enter], or press the space bar on your keyboard to toggle the port numbers.
Packets	Received column: Indicates the total number of packets received on this port, including bad packets, broadcast packets, and multicast packets.
	Transmitted column: Indicates the total number of packets transmitted successfully on this port, including broadcast packets and multicast packets.
Multicasts	Received column: Indicates the total number of good multicast packets received on this port, excluding broadcast packets.
	Transmitted column: Indicates the total number of multicast packets transmitted successfully on this port, excluding broadcast packets.
Broadcasts	Received column: Indicates the total number of good broadcast packets received on this port.
	Transmitted column: Indicates the total number of broadcast packets transmitted successfully on this port.
Total Octets	Received column: Indicates the total number of octets of data (including data in bad packets) received on this port, excluding framing bits, but including FCS octets.
	Transmitted column: Indicates the total number of octets of data transmitted successfully on this port, including FCS octets.
Lost Packets	Received column: Indicates the total number of packets lost (discarded) when the capacity of the port receive buffer was exceeded.
	Transmitted column: Indicates the total number of packets lost (discarded) when the capacity of the port transmit buffer was exceeded.
FCS Errors	Indicates the total number of valid-size packets that were received with proper framing but discarded because of cyclic redundancy check (CRC) errors.
Frame Errors	Indicates the total number of valid-size packets that were received but discarded because of CRC errors and improper framing.

Table 3-9. \quad Port Statistics screen fields (continued)

Field	Description
Undersized Packets	Indicates the total number of packets received on this port with less than 64 bytes and with proper CRC and framing (also known as short frames or runts).
Oversized Packets	Indicates the total number of packets received on this port with greater than 1518 bytes and with proper CRC and framing (also known as oversized frames).
Collisions	Indicates the total number of collisions detected on this port.
Single Collisions	Indicates the total number of packets that were transmitted successfully on this port after a single collision.
Multiple Collisions	Indicates the total number of packets that were transmitted successfully on this port after more than one collision.
Excessive Collisions	Indicates the total number of packets lost on this port due to excessive collisions.
Packets 64 bytes	Received column: Indicates the total number of 64-byte packets received on this port.
	Transmitted column: Indicates the total number of 64-byte packets transmitted successfully on this port.
65-127 bytes	Received column: Indicates the total number of 65 -byte to 127 -byte packets received on this port.
	Transmitted column: Indicates the total number of 65-byte to 127-byte packets transmitted successfully on this port.
128-255 bytes	Received column: Indicates the total number of 128 -byte to 255 -byte packets received on this port.
	Transmitted column: Indicates the total number of 128 -byte to 255 -byte packets transmitted successfully on this port.
256-511 bytes	Received column: Indicates the total number of 256-byte to 511 -byte packets received on this port.
	Transmitted column: Indicates the total number of 256-byte to 511-byte packets transmitted successfully on this port.
512-1023 bytes	Received column: Indicates the total number of 512-byte to 1023-byte packets received on this port.
	Transmitted column: Indicates the total number of 512-byte to 1023-byte packets transmitted successfully on this port.
1024-1518 bytes	Received column: Indicates the total number of 1024-byte to 1518-byte packets received on this port.
	Transmitted column: Indicates the total number of 1024-byte to 1518 -byte packets transmitted successfully on this port.
Filtered Packets	Indicates the number of packets filtered (not forwarded) by this port.

Table 3-9.	Port Statistics screen fields (continued)
Field	Description
Flooded Packets	Indicates the total number of packets flooded (forwarded) through this port because the destination address was not in the address database.
Deferred Packets	Indicates the total number of frames that were delayed on the first transmission attempt, but never incurred a collision. Late CollisionsIndicates the total number of packet collisions that occurred after a total length of time that exceeded 512 bit-times of packet transmission.

Clear Port Statistics

The Clear Port Statistics screen (Figure 3-16) allows you to reset to zero the port counters displayed in the Port Statistics screen. You can reset the port counters for a specific port or for all ports.

Figure 3-16. Clear Port Statistics screen

Table 3-10 describes the Clear Port Statistics screen field.
Table 3-10. Clear Port Statistics screen field

| Field | Description |
| :--- | :--- | :--- |
| Clear Statistics for | Allows you to reset the port counters for a specific port or for all ports. If you
 choose All, each port counter is reset to zero. See "Port Statistics" on page 3-32
 for more information about port statistics. |
| | Default Value $\quad 1$ |

Service Port Configuration

The Service Port Configuration screen (Figure 3-17) allows you to configure and modify the switch service port parameters.

Figure 3-17. Service Port Configuration screen

Table 3-11 describes the Service Port Configuration screen fields.

Table 3-11. Service Port Configuration screen fields

Field	Description
Service Port Data Bits	A read-only field that indicates the current service port data bit setting.
Service Port Parity	A read-only field that indicates the current service port parity setting.
Service Port Stop Bits	A read-only field that indicates the current service port stop bit setting.

Table 3-11. Service Port Configuration screen fields (continued)

Field	Description		
Console Port Speed	Allows you to set the switch service port baud rate to match the baud rate of the console terminal.		
Caution: If you choose a baud rate that does not match your console terminal			
baud rate, you will lose communication with the configuration interface when you			
press [Enter]. If communication is lost, set your console terminal to match the			
new service port setting.		\quad	Default Value 9600 Baud
:---			
Range 2400 Baud, 4800 Baud, 9600 Baud, 19200 Baud, 38400 Baud			
Enables password protection for accessing the CI through a TELNET session, a			
console terminal, or both.			
If you set this field to Required, you can use the Logout command to restrict			
access to the CI. Thereafter, you will need to specify the correct password at the			
console-terminal prompt. Refer to the Console Read-Only Password and			
Console Read-Write Password field descriptions for more information.			

Spanning Tree Configuration

The Spanning Tree Configuration Menu (Figure 3-18) allows you to view spanning tree parameters and configure individual switch ports to participate in the spanning tree algorithm (STA). To modify any of the spanning tree parameters, refer to your SNMP documentation.

Figure 3-18. Spanning Tree Configuration Menu

Table 3-12 describes the Spanning Tree Configuration Menu commands.
Table 3-12. Spanning Tree Configuration Menu commands

Command	Description
Spanning Tree Port Configuration...	Displays the Spanning Tree Port Configuration screen (see "Spanning Tree Port Configuration" on page 3-40).
Display Spanning Tree Switch Settings	Displays the Spanning Tree Switch Settings screen (see "Display Spanning Tree Switch Settings" on page 3-42). Return to Main Menu Exits the Spanning Tree Configuration Menu and displays the main menu.

Spanning Tree Port Configuration

The Spanning Tree Port Configuration screen (Figure 3-19) allows you to configure individual switch ports or all switch ports for participation in the STA.

Figure 3-19. Spanning Tree Port Configuration screen

Table 3-13 describes the Spanning Tree Port Configuration screen fields.

Display Spanning Tree Switch Settings

The Spanning Tree Switch Settings screen (Figure 3-20) allows you to view spanning tree parameter settings for the BayStack 350 switch.

Figure 3-20. Spanning Tree Switch Settings screen

Table 3-14 describes the Spanning Tree Switch Settings parameters.

Table 3-14.	anning Tree Switch Settings parameters
Parameter	Description
Bridge Priority	Indicates the management-assigned priority value of the bridge ID in hexadecimal notation, which is the most significant byte of the bridge ID. The STA uses this parameter to determine the root bridge (or designated bridge). For example, the bridge with the lowest bridge ID becomes the root bridge, with Bridge Priority values compared first, followed by the hardware addresses.
	Default Value 8000
	Range 0 to 65535
Designated Root	Indicates the bridge ID of the root bridge, as determined by the STA.
	Default Value 8000 (bridge_id)
	Range 0 to 65535
Root Port	Indicates the switch port number that offers the lowest path cost to the root bridge.
	Default Value 0
	Range 0 to 16
Root Path Cost	Indicates the path cost from this switch port to the root bridge.
	Default Value 0
	Range Not applicable
Hello Time	Indicates the Actual Hello interval (the amount of time between transmissions of Configuration Bridge PDUs) that the root bridge is currently using.
	Note that all bridges participating in the spanning tree network use the root bridge's Hello Interval parameter value. See also Bridge Hello Time.
	Default Value 2 seconds
	Range 1 to 10 seconds
Time	Indicates the Maximum Age Time parameter value that the root bridge is currently using. This value specifies the maximum age that a Hello message can attain before it is discarded.
	Note that the root bridge's Maximum Age Time parameter value becomes the (actual) Maximum Age Time parameter value for all bridges participating in the spanning tree network. See also Bridge Maximum Age Time.
	Default Value 20
	Range 6 to 40 seconds

Table 3-14. \quad Spanning Tree Switch Settings parameters (continued)

Parameter	Description
Forward Delay	Indicates the Forward Delay parameter value that the root bridge is currently using. This value specifies the amount of time that the bridge ports remain in the Listening and Learning states before entering the Forwarding state.
	Note that the root bridge's Forward Delay parameter value becomes the (actual) Forward Delay parameter value for all bridges participating in the spanning tree network. See also Bridge Forward Delay.
	Default Value 15
	Range 4 to 30 seconds
Bridge Hello Time	Indicates the Hello interval (the amount of time between transmissions of Configuration Bridge PDUs) specified by management for this bridge. This parameter takes effect only when this bridge becomes the root bridge.
	Note that, although you can set the Hello interval for a bridge using bridge management software, once the spanning tree computation process is complete, all bridges participating in the spanning tree network use the root bridge's Hello Interval parameter value. If any bridge becomes the root bridge, its Hello Interval parameter value becomes the (actual) Hello Interval parameter value for all bridges participating in the spanning tree network. See also Hello Time.
	Default Value 2
	Range $\quad 1$ to 10 seconds
Bridge Maximum Age Time	Specifies the maximum age (in seconds) that a Hello message can attain before it is discarded. This parameter, set for this bridge by management, takes effect only when this bridge becomes the root bridge.
	Note that, if this bridge becomes the root bridge, its Maximum Age Time parameter value becomes the (actual) Maximum Age Time parameter value for all bridges participating in the spanning tree network. See also Maximum Age Time.
	Default Value 20
	Range 6 to 40 seconds
Bridge Forward Delay	Indicates the Forward Delay parameter value specified by management for this bridge. This parameter takes effect only when this bridge becomes the root bridge.
	The Forward Delay parameter value specifies the amount of time that the bridge ports remain in the Listening and Learning states before entering the Forwarding state.
	Note that all bridges participating in the spanning tree network use the root bridge's Forward Delay parameter value. See also Forward Delay.
	Default Value 15
	Range 4 to 30 seconds

TELNET Configuration

The TELNET Configuration screen (Figure 3-21) allows a user at a remote console terminal to communicate with the BayStack 350 switch as if the console terminal were directly connected to it. You can have up to four active TELNET sessions at one time.

Figure 3-21. TELNET Configuration screen

Table 3-15 describes the TELNET Configuration screen fields.

Table 3-15. TELNET Configuration screen fields

Table 3-15. TELNET Configuration screen fields (continued)

Field	Description	
Allowed Source IP Address	Specifies up to 10 user-assigned host IP addresses that are allowed TELNET access to the Cl .	
	Default Value	0.0.0.0 (no IP address assigned)
	Range	Four-octet decimal IP address notation, where each octet of the address is represented as a decimal value, separated by a decimal point
Allowed Source Mask	Specifies up to 10 user-assigned allowed source address masks. The remote IP address is masked with the source mask and, if the resulting value equals the source IP address, the connection is allowed.	
	Default Value	0.0.0.0 (no IP mask assigned)
	Range	Four-octet decimal IP address notation, where each octet of the address is represented as a decimal value, separated by a decimal point

Software Download

The Software Download screen (Figure 3-22) allows you to revise the BayStack 350 switch software image that is located in nonvolatile flash memory. To download the BayStack 350 switch software image, a properly configured Trivial File Transfer Protocol (TFTP) server must be present in your network, and the switch must be configured with an IP address. (See "IP Configuration" on page 3-9 to learn how to configure the switch IP address.)

You can monitor the software download process by observing the BayStack 350 switch LEDs (see "LED Indications During the Download Process" on page 3-49).

Caution: Do not interrupt power to the device during the software download process. If the power is interrupted, the firmware image can become corrupted.

Software Download

```
Image Filename: [ b350_100.img ]
TFTP Server IP Address: [ 192.0.1.12 ]
Start TFTP Load of New Image: [ Yes ]
The Software Download process has started. Do NOT power down the
switch before the process has completed (approximately 10 minutes).
```

```
Enter text, press <Return> or <Enter> to select choice.
Press Ctrl-R to return to previous menu. Press Ctrl-C to return to Main Menu.
```

Figure 3-22. Software Download screen

Table 3-16 describes the Software Download screen fields.

LED Indications During the Download Process

The software download process is automated so that once initiated, it runs to completion without user intervention. The download process erases the contents of flash memory and replaces it with a new image; therefore, it is important that the download process not be interrupted once initiated. When the download process is complete, the switch is reset automatically and the new software image initiates a self-test. The self-test results are displayed briefly in the BayStack 350 switch Self-Test screen, which is followed by the CI screens.

During the download process, the BayStack 350 switch is nonfunctional. You can monitor the progress of the download process by observing the BayStack 350 switch LED indications.

Table 3-17 describes the LED indications during the software download process.

Note: Table 3-17 describes the LED indications displayed by the BayStack
Model 350T (16 port) switch. The BayStack Model 350F (14 port) switch LED indications are similar, but the LED patterns correspond to port numbers 1 through 14 only.

Table 3-17. LED indications during the software download process

Phase	Description	LED Indications
1	The new software image is being downloaded to the switch.	$100 \mathrm{Mb} / \mathrm{s}$ port status LEDs (ports 11 through 16 only): The LEDs begin to turn on (green) from right to left, beginning with port 16. The LED pattern indicates the progress of the download process. When LEDs 11 through 16 are all on, this indicates that the switch has received the new software image successfully.
2	The switch flash memory is being erased.	$10 \mathrm{Mb} / \mathrm{s}$ port status LEDs (ports 1 through 9 only): The LEDs begin to turn on (yellow) from left to right, beginning with port 1. The LED pattern indicates that various sectors of the switch flash memory are being erased. When LEDs 1 through 9 are all on, the switch flash memory is erased.
3	The new software image is being programmed into the switch flash memory.	$100 \mathrm{Mb} / \mathrm{s}$ port status LEDs (ports 1 through 8 only): The LEDs begin to turn on (green) from left to right, beginning with port 1. The LED pattern indicates that the new software image is being programmed into the switch flash memory. After LEDs 1 through 8 are all on, LEDs 9 through 16 turn on, indicating that the new software image has been programmed successfully into the switch flash memory.
4	The switch is reset automatically.	The reset can take up to 20 seconds to complete. Once the reset is complete, the new software image initiates the switch self-test that comprises various diagnostic routines and subtests.
		The LEDs display various patterns to indicate that the subtests are in progress. The results of the self-test are displayed briefly in the switch Self-Test screen, which is followed by the Cl screens.

Display Event Log

The Event Log screen (Figure 3-23) provides information about the following topics:

- Software download: Indicates the new software version.
- Authentication failure: Indicates any attempted SNMP get or set access that used an invalid community string.
- TELNET session status: Indicates various TELNET events. (For details on configuring this facility, see "TELNET Configuration" on page 3-45.)
- Operational exception: Indicates that the microprocessor has received an exception at the specified vector number.

Note: This screen does not refresh dynamically to show new entries. To refresh the screen, press $[\mathrm{Ctrl}]+\mathrm{P}$.

Figure 3-23. Event Log screen

Excessive Bad Entries

If the firmware detects excessive errors in the event log's flash memory (errors exceeding 75 percent of the memory buffer), the event log is cleared (that is, all entries are discarded) and an event entry is displayed in the Event Log screen.

Figure 3-24 shows an example of the event log entry for this type of event.

Figure 3-24. Sample event log entry showing excessive errors

Write Threshold

To extend the lifetime of the event log's flash memory, a write threshold is set for each event entered in the event log's flash memory. The write threshold is 20 entries for each event. If any event exceeds the write threshold, an event entry is displayed in the Event Log screen.

Figure 3-25 shows an example of the event log entry for this type of event.

```
Entry Number: 3 sysUpTime: 00:38:53 Reset Count: 2
The last event exceeded the write threshold. Further write attempts
by this event are blocked. The write threshold will be cleared when
the switch is reset or when the Event Log is compressed.
```

Figure 3-25. Sample event log event exceeding the write threshold

The write threshold is reset when either of the following occurs:

- The BayStack 350 switch is reset.
- The firmware determines that compression is required for maintenance of the event log's flash memory.

Reset

The Reset command allows you to reset the switch without erasing any configured switch parameters.

Resetting the switch takes approximately five seconds to complete. During this time, the switch initiates a self-test that comprises various diagnostic routines and subtests.

The results of the self-test are displayed briefly in the BayStack 350 switch Self-Test screen (Figure 3-26), which is followed by the CI screens.

```
BayStack Model 350T Self-Test
    ASIC addressing test ... Pass
    ASIC buffer RAM test ... Pass
    Physical layer test ... Pass
    Port internal loopback test ... Pass
```

Self-test complete.

Figure 3-26. Self-Test screen after resetting the switch

Note: The Self-Test screen remains displayed only if the self-test detects a fatal error.

The switch LEDs also display various patterns to indicate that the subtests are in progress.

Reset to Default Settings

The Reset to Default Settings command allows you to reset the switch and replace all configured switch parameters with the factory default settings. For a list of factory default settings, refer to Appendix C, "Switch Default Settings."

Caution: If you choose this command, all of your configured settings will be replaced with factory default settings when you press [Enter].

The Reset to Default command takes approximately five seconds to complete. During this time, the switch initiates a self-test that comprises various diagnostic routines and subtests. The results of the self-test are displayed briefly in the BayStack 350 switch Self-Test screen (Figure 3-27), which is followed by the CI screens.

BayStack Model 350T Self-Test

ASIC addressing test ... Pass
ASIC buffer RAM test ... Pass
Physical layer test ... Pass
Port internal loopback test ... Pass

Self-test complete.

Figure 3-27. Self-Test screen after resetting the switch to default settings

The switch LEDs also display various patterns to indicate that the subtests are in progress.

Logout

The Logout command allows a user working at a password-protected console terminal or in an active TELNET session to terminate the session.

The Logout command works as follows:

- If the user is accessing the BayStack 350 switch through a TELNET session, the Logout command terminates the session.
- If the user is accessing the BayStack 350 switch through a password-protected console (a terminal connected to the service port of the switch), the Logout command displays the console-terminal prompt (Figure 3-28). The user must enter the correct password to access the CI.

Figure 3-28. Password prompt screen

You can specify whether a password is required for the TELNET session or the console terminal using the Service Port Configuration screen (see "Service Port Configuration" on page 3-37).

If the console terminal is not password protected, the system ignores the Logout command.

Chapter 4 Troubleshooting

Overview

This chapter explains how to isolate and diagnose problems with your BayStack 350 10/100 Autosense Switch.

Warning: To avoid bodily injury from hazardous electrical current, never remove the top cover of the device. There are no user-serviceable components inside.

This chapter is organized to help lead you through a logical process for troubleshooting your BayStack 350 switch. For example, because the LEDs provide visual indications of problems, the section "LED Indications" helps you to understand the various states that each LED can exhibit during operation.

If you need more help in determining the problem, the section "Diagnosing and Correcting the Problem" on page 4-4 provides a table that lists symptoms and corrective actions you can perform to resolve specific problems. Subsequent sections provide step-by-step procedures for correcting specific problems listed in the table.

LED Indications

The BayStack 350 switch LEDs are located on the front panel (see Figure 4-1).

Figure 4-1. LED locations

Table 4-1 describes the BayStack 350 switch LEDs, as numbered in Figure 4-1.

Item	Icon/Label	Description
1	Power	Power LED (green)
On: DC power is available to the switch's internal circuitry.		
2	Diagnostics	Diagnostics LED (green)
		On: The switch passes the self-test.
		Blinking: A nonfatal error occurs during the self-test.
	Off: The switch fails the self-test.	
3	13 and 14	100BASE-FX port status LEDs, ports 13 and 14 (Model 350F only)
4	100	100BASE-FX/TX port status LEDs (green): ports 1 through 14 (ports 1 through 16 for Model 350T):
On: The corresponding port is set to operate at $100 \mathrm{Mb} / \mathrm{s}$.		
Off: The link connection is bad, or there is no connection to this port.		
Blinking: The corresponding port is management disabled.		
5	10*	10BASE-T port status LEDs (yellow): ports 1 through 12 (ports 1 through 16 for Model 350T):
On: The corresponding port is set to operate at $10 \mathrm{Mb} / \mathrm{s}$.		
Off: The link connection is bad, or there is no connection to this port.		
Blinking: The corresponding port is management disabled.		
6	FDX	Full-duplex port status LEDs (green): ports 1 through 14 (ports 1 through 16 for Model 350T):
On: The corresponding port is in full-duplex mode.		
Off: The corresponding port is in half-duplex mode.		
7	Activity	Port activity LEDs (green): ports 1 through 14 (ports 1 through 16 for Model 350T):
		Blinking: Indicates the network activity level for the corresponding port. A high level of network activity can cause the LEDs to appear to be on continuously.

[^5]
Diagnosing and Correcting the Problem

Before you perform the problem-solving steps in this section, cycle the power to the BayStack 350 switch (disconnect and then reconnect the AC power cord); then, verify that the switch follows the normal power-up sequence.

Normal Power-up Sequence

When power is applied to the BayStack 350 switch, the LEDs display in the following sequence:

1. After power is applied to the switch, the Power LED turns on within five seconds.
2. The switch initiates a self-test, during which the port LEDs display various patterns to indicate the progress of the self-test.
3. Upon successful completion of the self-test (within 10 seconds after power is applied), the Diagnostics LED turns on.
4. The remaining port LEDs indicate their operational status as described in Table 4-2.

Table 4-2. Corrective actions

Symptom	Probable Cause	Corrective Action
All LEDs are off.	The switch is not receiving AC power.	Verify that the AC power cord is fastened securely at both ends and that power is available at the AC outlet.
	The fans are not operating or the airflow is blocked, causing the unit to overheat.	Verify that there is sufficient space for adequate airflow on both sides of the switch.
		Note: Operating temperature for the switch must not exceed $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$. The switch should not be placed in the direct sunlight or near warm air exhausts or heaters.
The Activity LED for a connected port is off or	The switch is experiencing a port connection problem.	See "Port Connection Problems" on page 4-5.
does not blink (and you have reason to believe that traffic is present).	The switch link partner is not autonegotiating properly.	

Table 4-2. Corrective actions

Symptom	Probable Cause	Corrective Action
Diagnostics LED is off.	A fatal error was detected by the self-test.	Cycle the power to the switch (disconnect and then reconnect the AC power cord). If the problem persists, replace the switch.
Diagnostics LED is blinking.	A nonfatal error occurred during the self-test.	Cycle the power to the switch (disconnect and then reconnect the AC power cord). If the problem persists, contact the Bay Networks Technical Solutions Center.

Port Connection Problems

Port connection problems can usually be traced to a poor cable connection or an improper connection of the port cables at either end of the link. These types of problems can be remedied by making sure that the cable connections are secure and that the cables are connected to the correct ports at both ends of the link.

Other problems can be traced to the port interface or the autonegotiation mode.

Port Interface

Ensure that the devices are connected using the appropriate crossover or straight-through cable (see Appendix B, "Connectors and Pin Assignments").

Autonegotiation Modes

Port connection problems can occur when a port is connected to a station that is not operating in a compatible mode (for example, connecting a full-duplex port to a half-duplex port). The BayStack 350 switch negotiates port speeds according to the IEEE 802.3u autonegotiating standard. The switch adjusts (autonegotiates) its port speed and duplex mode to match the best service provided by the connected station, up to $100 \mathrm{Mb} / \mathrm{s}$ in full-duplex mode.

- If the connected station uses a form of autonegotiation that is not compatible with the IEEE 802.3u autonegotiating standard, the connected stations cannot negotiate a compatible mode for correct operation.
- If the autonegotiation feature is not present or is not enabled, at the connected station, the BayStack 350 switch may not be able to determine the correct duplex mode.

In both situations, the BayStack 350 switch "autosenses" the speed of the connected port and, by default, reverts to half-duplex mode. If the connected station is operating in full-duplex mode, it cannot communicate with the switch.

To correct this type of "mode mismatch" problem, follow these steps:

1. Use the Port Configuration screen to disable autonegotiation for the suspect port (see "Port Configuration" in Chapter 3).
2. Manually set the Speed/Duplex field to match the speed/duplex mode of the connected station (see Table 3-7 in Chapter 3).

You may have to try several settings before you find the correct speed/duplex mode of the connected station.

If the problem persists, follow these additional steps:

1. Disable the autonegotiation feature at the connected station.
2. Manually set the speed/duplex mode of the connected station to the same speed/duplex mode you have manually set for the BayStack 350 switch port.

Note: Bay Networks recommends that you manually set the BayStack 350 switch port to the desired speed/duplex mode when connecting to any of the following Bay Networks products:

- Bay Networks 28000 product family
- Bay Networks 58000 product family
- BayStack Model 302 T Switch ($100 \mathrm{Mb} / \mathrm{s}$ port)

Appendix A Technical Specifications

This appendix lists the technical specifications for the BayStack 350 10/100 Autosense Switch.

Environmental

Temperature:	Operating:	0° to $40^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$
	Storage:	-25° to $70^{\circ} \mathrm{C}\left(-13^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Humidity:	Operating:	85% maximum relative humidity, noncondensing
	Storage:	95% maximum relative humidity, noncondensing
Altitude:	Operating:	$3024 \mathrm{~m}(10,000 \mathrm{ft})$
	Storage:	$3024 \mathrm{~m}(10,000 \mathrm{ft})$

Electrical

Input Voltage:	90 to 250 VAC @ 47 to 63 Hz
Power Consumption:	100 W maximum

Physical Dimensions

```
Height: }\quad4.33\textrm{cm}\mathrm{ (1.72 in.)
Width: }\quad44.60\textrm{cm}(17.7 in.
Depth: }30.48\textrm{cm}\mathrm{ (12.0 in.)
Weight: }\quad4.31\textrm{kg}(9.5\textrm{lb}
```


Performance Specifications

Frame Forward Rate (64-byte packets):	1.6 million packets per second (pps) maximum, learned unicast traffic
Port Forwarding/Filtering Performance (64-byte	For $10 \mathrm{Mb} / \mathrm{s}: 14,880 \mathrm{pps}$ maximum
packets) Rx:	For $100 \mathrm{Mb} / \mathrm{s}: 148,810 \mathrm{pps}$ maximum
Address Database Size:	8,000 entries
Addressing:	48 -bit MAC address
Frame Length:	64 to 1518 bytes

Network Protocol and Standards Compatibility

- IEEE 802.3 10BASE-T (ISO/IEC 8802-3, Clause 14)
- IEEE 802.3u 100BASE-TX (ISO/IEC 8802-3, Clause 25)

Data Rate

- $10 \mathrm{Mb} / \mathrm{s}$ Manchester encoded or $100 \mathrm{Mb} / \mathrm{s} 4 \mathrm{~B} / 5 \mathrm{~B}$ encoded

Interface Options

- RJ-45 (8-pin modular) connectors for MDI-X interface
- BayStack Model 350F has 100BASE-FX SC connectors for supporting switched 100 Mb / s Fast Ethernet connections over 50/125 and 62.5/125 micron multimode fiber optic cable

Safety Agency Certification

- UL Listed (UL 1950)
- IEC 950/EN60950
- C22.2 No. 950 (cUL)
- UL-94-V1 flammability requirements for PC board

Electromagnetic Emissions

- FCC Part 15, Subpart B, Class A
- EN55022 (CISPR 22: 1985), Class A
- VCCI Class 1 ITE
- Australian AS 3548

Electromagnetic Susceptibility

EN50082-1

Declaration of Conformity

The following Declaration of Conformity for the BayStack 350 10/100 Autosense Switch complies with ISO/IEC Guide 22 and EN45014. The declaration identifies the product, the Bay Networks name and address, and the applicable specifications recognized by the European community.

Declaration of Conformity to Type

Appendix B

Connectors and Pin Assignments

This appendix describes the BayStack 350 10/100 Autosense Switch port connectors and pin assignments.

RJ-45 (10BASE-T/100BASE-TX) Port Connectors

The RJ-45 port connectors (Figure B-1) are wired as MDI-X ports to connect end stations without using crossover cables. (Refer to "MDI and MDI-X Devices" on page B-2 for information about MDI-X ports.) For 10BASE-T connections, use Category 3 (or higher) UTP cable. For 100BASE-TX connections, use only Category 5 UTP cable.

616EA
Figure B-1. RJ-45 (8-pin modular) port connector

Table B-1 lists the RJ-45 (8-pin modular) port connector pin assignments.

Table B-1.	RJ-45 port connector pin assignments	
Pin	Signal	Description
1	RX +	Receive Data +
2	RX-	Receive Data -
3	TX +	Transmit Data +
4	Not applicable	Not applicable
5	Not applicable	Not applicable
6	TX-	Transmit Data -
7	Not applicable	Not applicable
8	Not applicable	Not applicable

MDI and MDI-X Devices

Media Dependent Interface (MDI) is the IEEE standard for the interface to unshielded twisted pair (UTP) cable.

In order for two devices to communicate, the transmitter of one device must connect to the receiver of the other device. The connection is established through a crossover function, which can be a crossover cable or a port that implements the crossover function internally.

Ports that implement the crossover function internally are known as MDI-X ports, where X refers to the crossover function.

Note: For the transmitter of one device to connect to the receiver of another device, the total number of crossovers must always be an odd number.

The following sections describe the use of straight-through and crossover cables for connecting MDI and MDI-X devices.

MDI-X to MDI Cable Connections

BayStack 350 switches use MDI-X ports that allow you to connect directly to end stations without using crossover cables (Figure B-2).

Figure B-2. MDI-X to MDI cable connections

MDI-X to MDI-X Cable Connections

If you are connecting the BayStack 350 switch to a device that also implements MDI-X ports, use a crossover cable (Figure B-3).

Figure B-3. MDI-X to MDI-X cable connections

DB-9 (RS-232-D) Service Port Connector

The DB-9 service port connector (Figure B-4) is configured as a data communications equipment (DCE) device connector. The DSR and CTS signal outputs are always asserted; the CD, DTR, RTS, and RI signal inputs are not used. This configuration enables a management station (a PC or terminal) to connect directly to the switch using a straight-through cable.

Figure B-4. DB-9 service port connector

Table B-2 lists the DB-9 service port connector pin assignments.
Table B-2. DB-9 service port connector pin assignments

Pin	Signal	Description
1	CD	Carrier detect (not used)
2	TXD	Transmit data (output)
3	RXD	Receive data (input)
4	DTR	Data terminal ready (not used)
5	GND	Signal ground
6	DSR	Data set ready (output always asserted)
7	RTS	Request to send (not used)
8	CTS	Clear to send (output always asserted)
9	RI	Ring indicator (not used)
Shell		Chassis ground

100BASE-FX Fiber Optic Port Connectors

The BayStack 350F switch provides two duplex SC connectors for supporting switched $100 \mathrm{Mb} / \mathrm{s}$ Fast Ethernet connections over $50 / 125$ and $62.5 / 125$ micron multimode fiber optic cable.

Warning: Fiber optic equipment can emit laser or infrared light that can injure your eyes. Never look into an optical fiber or connector port. Always assume that fiber optic cables are connected to a light source.

Figure B-5 shows a 100BASE-FX multimode fiber optic port connector and its pin assignments.

Figure B-5. 100BASE-FX multimode fiber optic port connector

Appendix C Switch Default Settings

Table C-1 lists the factory default settings for the BayStack 350 switch.
Table C-1. Factory default settings for the BayStack 350 switch

Field	Default Setting	Appears in This CI Screen
BootP Request Mode	BootP When Needed	IP Configuration
In-Band IP Address	0.0 .0 .0 (no IP address assigned)	
In-Band Subnet Mask	0.0 .0 .0 (no subnet mask assigned)	
Default Gateway	0.0 .0 .0 (no IP address assigned)	
Read-Only Community String	public	SNMP Configuration
Read-Write Community String	private	
Trap IP Address	0.0 .0 .0 (no IP address assigned)	
Community String	Zero-length string	
Authentication Trap	Enabled	
sysContact	Zero-length string	System Characteristics
sysName	Zero-length string	
sysLocation	Zero-length string	MAC Address Table
Aging Time	300 seconds	
Find an Address	$00-00-00-00-00-00$	VLAN Configuration
(no MAC address assigned)	Port Configuration	
Status	All ports configured in VLAN V1	
Auto Negotiation	Enabled for all ports	

Table C-1. Factory default settings for the BayStack 350 switch (continued)

Field	Default Setting	Appears in This CI Screen
Packet Type	Both	Rate Limiting Configuration
Limit	None	
Port	1	Port Statistics
Clear Statistics for Port	1	Clear Port Statistics
Console Port Speed	9600 Baud	Service Port Configuration
Console Password	Not Required	
Console Read-Only Password	user	
Console Read-Write Password	secure	
Participation	Enabled	Configuration Port
		TELNET Configuration
TELNET Access	Enabled	
Login Timeout	1 minute	
Login Retries	3	
Inactivity Timeout	15 minutes	
Event Logging	All	
Allowed Source IP Address	First field: 0.0.0.0	
(10 user-configurable fields)	(no IP address assigned)	
	Remaining nine fields: 255.255.255.255	
(any address is allowed)		
Allowed Source Mask	First field: 0.0.0.0	
(10 user-configurable fields)	(no IP address assigned)	Software Download
	Remaining nine fields: 255.255.255.255	
(any address is allowed)		
Zmage Filename	Zero-length string	
SFTP Server IP Address TFTP Load of New Image	0.0 .0 .0 (no IP address assigned)	No

*. This field is not available for the BayStack 350F switch 100BASE-FX fiber optic ports (ports 13 and 14).

Appendix D Sample BootP Configuration File

Abstract

This appendix provides a sample BootP configuration file. The BootP server searches for this file, called bootptab (or BOOTPTAB.TXT, depending on your operating system), which contains the site-specific information (including IP addresses) needed to perform the software download and configuration. You can modify this sample BootP configuration file or create one of your own.

A sample BootP configuration file follows:

```
# The following is a sample of a BootP configuration file that was extracted from
# a Bay Networks EZ LAN network management application. Note that other BootP daemons
# can use a configuration file with a different format.
#
# Before using your switch BootP facility, you must customize your BootP configuration
# file with the appropriate data.
#
# Blank lines and lines beginning with '#' are ignored.
#
# Legend:
#
EZ fv -- firmware version
# EZ av -- agent version
#
# Fields are separated with a pipe (|) symbol. Forward slashes (/) are required
# to indicate that an entry is continued to the next line.
```

```
# Caution
#
# Omitting a Forward slash (/) when the entry is continued to the next line,
# can cause the interruption of the booting process or the incorrect image file
# to download. Always include forward slashes where needed.
#
# Important Note:
#
# If a leading zero (0) is used in the IP address it is calculated
# as an octal number. If the leading character is "x" (upper- or lower-case),
# it is calculated as a hexadecimal number. For example, if an IP address
# with a base 10 number of 45 is written as . }045\mathrm{ in the BOOTPTAB.TXT file, the
# Bootp protocol assigns . }037\mathrm{ to the client.
#
# Global entries are defined that specify the parameters used by every device.
# Note that hardware type (ht) is specified first in the global entry.
#
# The following global entry is defined for an Ethernet device. Note that this is where
# a client's subnet mask (sm) and default gateway (gw) are defined.
#
global1|/
    |ht=ethernet|/
    |hd=c:\opt\images|/
    |sm=255.255.255.0|/
    |gw=192.0.1.0|
#
# The following sample entry describes a BootP client:
bay1|ht=ethernet|ha=0060fd000000|ip=192.0.0.1|hd=c:\ezlan\images|bf=b350_100.img
# Where:
# host name: bay1
# hardware type: Ethernet
# MAC address: 00-60-FD-00-00-00
# IP address: 192.0.0.1
# home directory of boot file: c:\ezlan\images
# boot file: b350_100.img
```


Index

A

Activity LEDs, 1-3
Aging Time field, 3-21
Allowed Source IP Address field, 3-47
Allowed Source Mask field, 3-47
Authentication Trap field, 3-15
Auto Negotiation field, 3-29
autonegotiation modes
description, 1-5
troubleshooting, 4-5

B

bandwidth, mixing, 1-8
Bay Networks Press, xvii
Bay Networks World Wide Web page, xix
BayStack 350 switch Self-Test screen after Reset command, 3-53
after Reset to Default command, 3-54
during download process, 3-49
BootP
Always setting, 3-12
automatic IP configuration, 1-6
BOOTPTAB.TXT file, D-1
choosing a request mode, 3-11
Disabled setting, 3-12
Last Address setting, 3-13
sample configuration file, D-1
server, 2-4
setting IP address with, 1-7
When Needed setting, 3-11
BootP Request Mode field, 3-10
Bootstrap Protocol. See BootP

Bridge Forward Delay field, 3-44
Bridge Hello Time field, 3-44
Bridge Maximum Age Time field, 3-44
Bridge Priority field, 3-43
Broadcasts field, 3-33

C

CI. See console interface

Clear Port Statistics command, 3-19
Clear Port Statistics screen, 3-36
Clear Statistics for Port field, 3-36
Collisions field, 3-34
commands
Clear Port Statistics, 3-19
Display Event Log, 3-7
Display Port Statistics, 3-19
Display Spanning Tree Switch Settings, 3-39
IP Configuration, 3-7
Logout, 3-8
MAC Address Table, 3-19
Port Configuration, 3-19
Rate Limiting Configuration, 3-19
Reset to Default Settings, 3-8
Service Port Configuration, 3-7
SNMP Configuration, 3-7
Software Download, 3-7
Spanning Tree Configuration, 3-7
Spanning Tree Port Configuration, 3-39
Switch Configuration, 3-7
System Characteristics, 3-7
TELNET Configuration, 3-7
VLAN Configuration, 3-19

Community String field, 3-15
components of BayStack 350 switch, 1-2
Configurable field, 3-10
connectors, 1-3, B-1
console interface (CI)
access options, 3-1
description, 3-1
main menu, 3-6
menus, accessing, 3-3
menus, using, 3-4
Console Password field, 3-38
Console Port Speed field, 3-38
Console Read-Only Password field, 3-38
Console Read-Write Password field, 3-38
console terminal
allowed types, 1-13, 1-14, 2-3, 3-2
configuration parameters, 3-3
cooling fans, 1-4
crossover cable, B-4
customer support
programs, xviii
Technical Solutions Center, xviii

D

DB-9 service port connector, B-5
Declaration of Conformity, A-4
Default Gateway field, 3-10
default settings, C-1
Deferred Packets field, 3-35
Designated Root field, 3-43
Diagnostics LED, 1-3, 2-15, 4-3
Display Event Log command, 3-7
Display Port Statistics command, 3-19
Display Spanning Tree Switch Settings command, 3-39

E

Event Log screen, 3-51
authentication failure, 3-51
event log flash memory, 3-52
excessive bad entries, 3-52
operational exception, 3-51
software download, 3-51
TELNET session status, 3-51
write threshold, 3-52
Event Logging field, 3-46
Excessive Collisions field, 3-34
EZ LAN, 2-4

F

FCS Errors field, 3-33
FDX LEDs, 1-3
features of BayStack 350 switch, 1-4 to 1-10
Filtered Packets field, 3-34
Find an Address field, 3-21
flash memory for software image upgrades, 1-6
Flooded Packets field, 3-35
Forward Delay field, 3-44
forwarding rate (packets per second), 1-4
Frame Errors field, 3-33

H

Hello Time field, 3-43

I

IEEE 802.3u-compliant autonegotiation, 1-5
Image Filename field, 3-49
In Use field, 3-10
Inactivity Timeout field, 3-46
In-Band IP Address field, 3-10
In-Band Subnet Mask field, 3-10
installation
console terminal, 2-3
environmental specifications, 2-4
installation flowchart, 1-12
LED verification, 2-15
mounting brackets, 2-3
network cable preparation, 2-3
package contents, 2-2
Quick Start, 1-12
rack mounting, 2-10
required servers, 2-4
required tools, 2-1
software requirements, 2-4
surface mounting, 2-5
tabletop or shelf mounting, 2-7
verifying, 2-15
wall mounting, 2-8
IP address, automatic configuration, 1-6
IP Configuration command, 3-7
IP Configuration screen, 1-14, 3-9

L

Last BootP field, 3-10
Last Reset Type field, 3-17
Late Collisions field, 3-35
learning rate, addresses per second, 1-4
LEDs
indications during download process, 3-50
status monitors, 1-6
verifying installation with, 2-15
Link field, 3-29
Login Retries field, 3-46
Login Timeout field, 3-46
Logout command, 3-8, 3-55
logout, password protected, 3-55
Lost Packets field, 3-33

M

MAC Address field, 3-17
MAC Address Table command, 3-19

MAC Address Table screen, 3-20
MAC address, learning IP address, 1-6
main menu, 3-6
Management Information Base (MIB), 1-5
manufacturing label, 1-3
Maximum Age Time field, 3-43
MDI-X to MDI cable connections, B-3
MDI-X to MDI-X cable connections, B-4
MIB. See Management Information Base modem requirements, 3-2
mounting brackets, installing, 2-6
Multicasts field, 3-33
Multiple Collisions field, 3-34

N

network configuration desktop/segment diagram, 1-9
power workgroup diagram, 1-8
virtual LANs diagram, 1-10
network interface card (NIC)
connecting to, 2-12
network management, 1-6
Bay Networks applications, 2-4
SNMP, 1-14
through the service port, 1-13
network protocol/standards compatibility, A-2
NIC. See network interface card

0

Optivity, 2-4
out-of-band management, modem requirements, 3-2
Oversized Packets field, 3-34

P

Packets field, 3-33

Participation field, 3-41
password prompt screen, 3-55
Path Cost field, 3-41
pin assignments, B-1
port cables, connecting, 2-12
Port Configuration command, 3-19
Port Configuration screen, 3-28
port connections, troubleshooting, 4-5
port connector LEDs, 1-3
Port field, 3-29, 3-33, 3-41
Port Statistics screen, 3-32
port status LEDs, 2-15
ports
IEEE 802.3u-compliant autonegotiation, 1-5
modes, 1-5
Power LED, 2-15
power, connecting, 2-14
power-up sequence, 4-4
Priority field, 3-41
publications, ordering, xvii

Q

Quick Start procedures, 1-11

R

Rate limiting, 1-4
broadcast and multicast storms, 3-30
configuration, 3-30
Rate Limiting Configuration command, 3-19
Rate Limiting Configuration screen, 3-30
Read-Only Community String field, 3-15
Read-Write Community String field, 3-15
remote access, connecting a modem, 3-2
remote monitoring (RMON), 1-5
request mode, choosing, 3-11
Reset command, 3-7, 3-53

Reset Count field, 3-17
Reset to Default Settings command, 3-8, 3-54
RJ-45 port connector
illustration, B-1
pin assignments, B-2
RMON. See remote monitoring
Root Path Cost field, 3-43
Root Port field, 3-43

S

safety alert messages, xxi
serial port connector, 1-3
servers
BootP, 2-4
TFTP, 2-4
service port
requirements for, 3-2
using to manage the switch, 1-13
Service Port Configuration command, 3-7
Service Port Configuration screen, 3-37
service port connector
illustration, B-5
pin assignments, B-5
Service Port Data Bits field, 3-37
Service Port Parity field, 3-37
Service Port Stop Bits field, 3-37
service port, connecting to, 3-3
settings, default, C-1
Simple Network Management Protocol (SNMP)
MIB support, 1-5, 1-7
traps, 1-14
using to manage the switch, 1-7
Single Collisions field, 3-34
SNMP Configuration command, 3-7
SNMP Configuration screen, 3-14
SNMP. See Simple Network Management Protocol
software
download process, 3-49
image upgrades, 1-6
requirements, 2-4
Software Download command, 3-7
Software Download screen, 3-48
Spanning Tree Configuration command, 3-7
Spanning Tree Configuration Menu, 3-39
Spanning Tree Port Configuration command, 3-39
Spanning Tree Port Configuration screen, 3-40
Spanning Tree Protocol, compliance standards, 1-4
Spanning Tree Switch Settings screen, 3-42
Speed/Duplex field, 3-29
Start TFTP Load of New Image field, 3-49
State field, 3-41
Status field, 3-29
Switch Configuration command, 3-7
Switch Configuration Menu, 3-18
commands, 3-19
sysContact field, 3-17
sysDescr field, 3-17
sysLocation field, 3-17
sysName field, 3-17
sysObjectID field, 3-17
sysServices field, 3-17
System Characteristics command, 3-7
System Characteristics screen, 3-16
sysUpTime field, 3-17

T

Technical Solutions Centers, xviii
technical specifications, A-1
TELNET
accessing CI menus and screens, 3-3
event \log operational exception, 3-51
event \log session status, 3-51
in-band access, 3-1
Logout command, 3-55
supported features, 1-5
See also Service Port Configuration screen
See also TELNET Configuration screen
TELNET Access field, 3-46
TELNET Configuration command, 3-7
TELNET Configuration screen, 3-45
TFTP Server IP Address field, 3-49
TFTP. See Trivial File Transfer Protocol
Total Octets field, 3-33
Trap IP Address fields, 3-15
traps, 1-7
Trivial File Transfer Protocol (TFTP)
server, 2-4
software download, 3-48
using to upgrade firmware, 1-6
troubleshooting
port interface, 4-5
power-up sequence, 4-4

U

Undersized Packets field, 3-34

V

virtual LAN (VLAN), 1-7, 3-22
configuration example, 3-24
creating and configuring, 1-10, 3-22
network example, 1-7, 3-22
VLAN Configuration screen, 3-22
VLAN Configuration command, 3-19
VLAN Configuration screen, 3-22

W

World Wide Web page, Bay Networks, xix

[^0]: Symbol Meaning（English，German，French，Spanish，Italian，Japanese）

[^1]: 警告：光ファイバ装置は目に有害なレーザー光や赤外線を放射することが あります。光ファイバやコネクタ・ポートを䫑き込まないでください。光ファイバ・ケーブルは光源に接続されているものと思ってください。

[^2]: *. The BayStack 350 switch adjusts (autonegotiates) its port speed and duplex mode to match the best service provided by the connected station, up to $100 \mathrm{Mb} / \mathrm{s}$ in full-duplex mode.

[^3]: *. You cannot modify this field for the BayStack Model 350F switch 100BASE-FX fiber optic ports (ports 13 and 14).
 \dagger. The BayStack Model 350F switch 100BASE-FX fiber optic ports (ports 13 and 14) can be set to $100 \mathrm{Mbs} / \mathrm{Half}$ or 100 Mbs/Full.

[^4]: *. Rate limiting is disabled if this field is set to None. This allows you to select and view the percentage of specific packet types present in the network, without inadvertently limiting the forwarding rate.

[^5]: *. Not available on the BayStack Model 350F fiber optic ports 13 and 14.

