HW Set VI- page 1 of 9
PHYSICS 1401 (1) homework solutions

10-30 A 10 g bullet moving directly upward at $1000 \mathrm{~m} / \mathrm{s}$ strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 10-33). The bullet emerges from the block moving directly upward at $400 \mathrm{~m} / \mathrm{s}$. To what maximum height does the block then rise above its initial position?

givens: $m=10 \mathrm{~g}=.010 \mathrm{~kg}$

$$
\begin{aligned}
v_{0} & =1000 \mathrm{~m} / \mathrm{s} \\
M & =5.0 \mathrm{~kg} \\
v_{1} & =400 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

First, find the velocity \& block after the collision using momentum conservation. (Though gravity acts during collision, its impulse is negligible.)

$$
\begin{aligned}
& m v_{0}=m v_{1}+M V \\
& \quad V=\frac{m}{M}\left(v_{0}-v_{1}\right)=\frac{.010}{5.0}(1000-400)=1.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The height, h, attained by the block may be obtained from energy conservation (applied to block only) subsequent to the collision.

$$
\begin{gathered}
\frac{1}{2} M V^{2}=M g h \Rightarrow h=\frac{V^{2}}{2 g}=\frac{(1.2)^{2}}{2(9.8)} . \\
h=.073 \text { meters }
\end{gathered}
$$

HW Set VI- page 2 of 9
 PHYSICS 1401 (1) homework solutions

10-44 In Fig. 10-40, block 1 of mass m_{1} is at rest on a long frictionless table that is up against a wall. Block 2 of mass m_{2} is placed between block 1 and the wall and sent sliding to the left, toward block 1 , with constant speed v^{2} i. Assuming that all collisions are elastic, find the value of m_{2} (in terms of m_{1}) for which both blocks move with the same velocity after block 2 has collided once with
block 1 and once with the wall. Assume the wall to have infinite mass.

HW Set VI- page 3 of 9
PHYSICS 1401 (1) homework solutions
10-50 Two balls A and B, having different but unknown masses, collide. Initially, A is at rest and B has speed v. After the collision, B has speed $v / 2$ and moves perpendicularly to its original motion.
(a) Find the direction in which ball A moves after the collision.
(b) Show that you cannot determine the speed of A from the information given.

before collision

after collision

Momentum is conserved in both x and y-directions.
(Note: Since are not told collision is elastic, we cannot assume that mechanical entry censer nation.)
x-direction: $\quad m_{B} v_{B}=0+m_{A} v_{A}^{\prime} \cos \phi$
y direction $\quad 0=m_{B} v_{B}^{\prime}-m_{A} v_{A}^{\prime} \sin \phi$
Ke-writirg two equation e

$$
\begin{aligned}
& m_{A} v_{A}^{\prime} \sin \phi=m_{B} v_{B}^{\prime} \\
& m_{A} v_{A}^{\prime} \cos \phi=m_{B} v_{B}
\end{aligned}
$$

(a) Ratio $\tan \phi=\frac{v_{B}^{\prime}}{v_{B}}=\frac{v / 2}{v}=\frac{1}{2} \Leftrightarrow \phi=26.6^{\circ}\binom{$ below }{ r-axis }
(b)
W_{e} carr square and add the two equations

$$
\begin{aligned}
m_{A}{ }^{2}\left(v_{A}^{\prime}\right)^{2}\left[\sin ^{2} \phi+\cos ^{2} \phi\right] & \left.=m_{B}^{2}\left(V_{B}^{\prime}\right)^{2}+v_{B}^{2}\right) \\
V_{A}^{\prime} & =\frac{m_{B}}{m_{A}} \sqrt{\left(\frac{v}{2}\right)^{2}+v^{2}}=v \frac{m_{B}}{m_{A}} \sqrt{\frac{5}{4}}
\end{aligned}
$$

But we are mot given v^{\prime}, or n_{B} / m_{A}
So we cannot get $V_{A}^{\prime \prime}$.
(with the information provided)

HW Set VI- page 4 of 9
PHYSICS 1401 (1) homework solutions
10-54 Two 30 kg children, each with a speed of $4.0 \mathrm{~m} / \mathrm{s}$, are sliding on a frictionless frozen pond when they collide and stick together because they have Velcro straps on their jackets. The two children then collide and stick to a 75 kg man who was sliding at 2.0 m / s. After this collision, the three-person composite is stationary. What is the angle between the initial velocity vectors of the two children?

10-54
First choose a coordinate systems. Note that we are fold that (kids) + (man) stich together at nest. Hence, lets choose the x-axis to be along the momentum 1 the kids.

Choose the origin to be the point where kids + man all stich together.
Note that the two kids have the same mass, $m_{2}=m_{1}=30 \mathrm{~kg}$ and the same speeds

$$
v_{2}=v_{1}=4.0 \mathrm{~m} / \mathrm{s}
$$

In our coordinate system, theirs
net y momentum is zero (since They Travel along x-axis afterwards

Hence $P_{1 y}=v_{2 y} \quad m_{1}=m_{1}, v_{1}=v_{2}$

$$
\theta_{1}=\theta_{2} \equiv \theta \quad\binom{\text { defines }}{\text { angle } \theta}
$$

Net momentum (all in x) of the kids is

$$
\begin{aligned}
& P_{x}=P_{1 x}+P_{2 x}=m_{1} v_{1} \cos \theta_{1}+m_{2} v_{2} \cos \theta_{2} \\
& P_{x}=2 m v \cos \theta \quad \text { where } \\
& m=30 \mathrm{~kg} \\
& v=4.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Since they and man stick together at rest, then the man's momentum (before collision) must be opposite this

$$
P_{x}=-M V \text { where } M=75 \mathrm{~kg} \quad V=2.0 \mathrm{~m} / \mathrm{s}
$$

Together they have zero monention

$$
\begin{aligned}
P_{x}+P_{x} & =0=2 m v \cos \theta-M V \\
\cos \theta & =\frac{M V}{2 m v}=\frac{(75)(2.0)}{2(30)(4.0)}=0.625 \\
\theta & =51.3^{\circ}
\end{aligned}
$$

So, angle between children is

$$
2 \theta=2(51.3)=102.6^{\circ}
$$

HW Set VI- page 5 of 9
PHYSICS 1401 (1) homework solutions
11-7 A diver makes 2.5 revolutions on the way from a 10 -m-high platform to the water. Assuming zero initial vertical velocity, find the diver's average angular velocity during a dive.
$11-7$
$\leftrightarrow T$ Since the diver is in free-fall,

$$
\sum \begin{aligned}
& h=10 \mathrm{~m}
\end{aligned} \quad \text { and starts at rest }
$$

So, the time it takes to fall is $t_{1}=\sqrt{\frac{2 h}{g}}$
During $t=t_{1}$, the diver rotates through 2.5 revolutions or $\theta=2.5(2 \pi)$ radians
Hence

$$
\omega=\frac{\theta}{t}=2.5(2 \pi) \sqrt{\frac{g}{2 h}}=2.5(2 \pi) \sqrt{\frac{9.8}{2(10)}}
$$

$$
\omega=\| \frac{\mathrm{rad}}{\mathrm{sac}} \text { average angular velocity }
$$

HW Set VI- page 6 of 9 PHYSICS 1401 (1) homework solutions

11-32 A record turntable is rotating at $331 / 3 \mathrm{rev} / \mathrm{min}$. A watermelon seed is on the turntable 6.0 cm from the axis of rotation.
(a) Calculate the acceleration of the seed, assuming that it does not slip.
(b) What is the minimum value of the coefficient of static friction between the seed and the turntable if the seed is not to slip?
(c) Suppose that the turntable achieves its angular speed by starting from rest and undergoing a constant angular acceleration for 0.25 s . Calculate the minimum coefficient of static friction required for the seed not to slip during the acceleration period.

Looking edgewise at the seed with the forces.

The (static) friction force is

$$
f=\mu_{s} N=\mu_{s} m g
$$

(a) The acceleration f the seed is

$$
a_{c}=r \omega^{2}
$$

where $r=d=.06 \mathrm{~m}$

$$
\begin{aligned}
& \omega=2 \pi(331 / 3) \frac{\mathrm{rad}}{\mathrm{~min}} \times \frac{1 \mathrm{~min}}{100 \mathrm{sec}}=3.49 \mathrm{red} / \mathrm{s} \\
& \text { So } \quad a_{c}=(.06 \mathrm{~m})(3.49 \mathrm{mad} / \mathrm{s})^{2}=0.73 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

(b) Since $f=m a_{c}$ or $\mu_{s} h g=m a_{c}$

$$
\mu_{s}=\frac{a_{c}}{g}=\frac{0.73}{9.8}=0.075 \quad \text { (for } \mu_{s} \hat{e}_{i p} \text {) }
$$

(c) While getting up to sped, the total acceleration is

$$
a_{t}=r \alpha
$$

$$
a=\sqrt{a_{t}^{2}+a_{t}^{2}}=\sqrt{(0.73)^{2}+\left[(.06)\left(\frac{3.49}{.25}\right)\right]^{2}}=1.11 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
a_{t}=d \frac{\omega}{t} \text { with } t=25 \mathrm{~s}
$$

$$
\mu_{s}=\frac{a}{g}=\frac{1.11}{9.8}=0.11 \quad \text { (for no slip) }
$$

HW Set VI- page 7 of 9
PHYSICS 1401 (1) homework solutions
11-44 Delivery trucks that operate by making use of energy stored in a rotating flywheel have been used in Europe. The trucks are charged by using an electric motor to get the flywheel up to its top speed of $200 \pi \mathrm{rad} / \mathrm{s}$. One such flywheel is a solid, uniform cylinder with a mass of 500 kg and a radius of 1.0 m .
(a) What is the kinetic energy of the flywheel after charging?
(b) If the truck operates with an average power requirement of 8.0 kW , for how many minutes can it operate between chargings?
$11-44$
(a) Kinetic Energy of $\mathrm{Fl} y$ wheal

Flywheel $=$ cylinder rotative about axis \perp wheal though center

$$
\begin{aligned}
& I=\frac{1}{2} M R^{2} \\
& K=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(\frac{1}{2} M R^{2}\right) \omega^{2} \\
& K=\frac{1}{4} M R^{2} \omega^{2}=\frac{1}{4}(500 \mathrm{~kg})(1.0)^{2}(200 \pi)^{2} \\
& K=4.9 \times 10^{7} \text { Joules }
\end{aligned}
$$

(b) Since $P=\frac{W}{t}$, we power is work per unit hame. Assume

$$
\text { Then } t=\frac{K}{P}=\frac{4.9 \times 10^{\text {Work Junks }}}{8.0 \times 10^{5} \text { Joules } / \mathrm{s}} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=103 \text { minutes }
$$

HW Set VI- page 8 of 9
 PHYSICS 1401 (1) homework solutions

11-57 Figure 11-43 shows two blocks, each of mass m, suspended from the ends of a rigid massless rod of length L_{1} $+\mathrm{L}_{2}$, with $\mathrm{L}_{1}=20 \mathrm{~cm}$ and $\mathrm{L}_{2}=80 \mathrm{~cm}$. The rod is held horizontally on the fulcrum and then released. What are the magnitudes of the initial accelerations of

(a) the block closer to the fulcrum and
(b) the other block?

Sketch and define (arbitrary) politic rotation as clock mise. istantanems
We are asked about angular accelecetion as system is
released (at instant pictured).
$\Sigma \tau=I \alpha$
$\begin{aligned} & \text { Net torque is } \\ & \text { (about pivot) }\end{aligned} M_{2} g L_{2}-M_{1} g L_{1}$

$$
\begin{array}{ll}
\text { System momented } & I=M_{1} L_{1}^{2}+M_{2} L_{2}^{2} \\
\text { inertia is } \\
S_{0} & \left(M_{2} L_{2}-M_{1} L_{1}\right) g=\left(M_{1} L_{1}^{2}+M_{2} L_{2}^{2}\right) \alpha
\end{array}
$$

Since $M_{1}=M_{2}=m$
then masses cancel

$$
\begin{aligned}
& \alpha=g \frac{L_{2}-L_{1}}{L_{2}{ }^{2}+L_{1}{ }^{2}}=9.8 \frac{0.8-0.2}{(0.8)^{2}+(0.2)^{2}} \\
& \alpha=8.65 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Since α is tue, then system rotates clockwise and

$$
\begin{aligned}
& a_{2}=\text { acceleration of } M_{2} \text { is down } \\
& a_{2}=L_{2} \alpha=(0.8)(8.65)=6.92 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

And $a_{1}=$ acceleration of M_{1} is up

$$
a_{1}=L_{1} d=(0.2)(8.65)=1.73 \mathrm{~m} / \mathrm{s}^{2}
$$

HW Set VI- page 9 of 9 PHYSICS 1401 (1) homework solutions

11-64 A uniform cylinder of radius 10 cm and mass 20 kg is mounted so as to rotate freely about a horizontal axis that is parallel to and 5.0 cm from the central longitudinal axis of the cylinder.
(a) What is the rotational inertia of the cylinder about the axis of rotation?
(b) If the cylinder is released from rest with its central longitudinal axis at the same height as the axis about which the cylinder rotates, what is the angular speed of the cylinder as it passes through its lowest position?

11-64 Make picture
(a) Find I a moment of
inertia about the
crotataten

Using parallel axis theorem $I=I_{\text {com }}+M h^{2}$

$$
\begin{aligned}
& \text { and recognizing) } I_{\text {com }}=\frac{1}{2} M R^{2} \\
& \text { (for cylinder) }
\end{aligned}
$$

$$
I=\frac{1}{2}(20)(0.10)^{2}+(20)(.05)^{2}=20[.00750]
$$

$$
I=0.15 \mathrm{~kg}-\mathrm{m}^{2}
$$

(b) If released with com, at same height an axis, when it rotates to com $t \underline{2}$ below axis, the potential energy has changed $U=M g h$
So the kinetic energy gained is $\quad K=\frac{1}{2} I \omega^{2}=M g h$

$$
\begin{aligned}
& \omega=\sqrt{\frac{2 M g h}{I}}=\sqrt{\frac{2(20)(9.8)(.05)}{0.15}} \\
& \omega=11.4 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

